The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health problem that the WHO declared a pandemic. COVID-19 has resulted in a worldwide lockdown and threatened to topple the global economy. The mortality of COVID-19 is comparatively low compared with previous SARS outbreaks, but the rate of spread of the disease and its morbidity is alarming. This virus can be transmitted human-to-human through droplets and close contact, and people of all ages are susceptible to this virus. With the advancements in nanotechnology, their remarkable properties, including their ability to amplify signal, can be used for the development of nanobiosensors and nanoimaging techniques that can be used for early-stage detection along with other diagnostic tools. Nano-based protection equipment and disinfecting agents can provide much-needed protection against SARS-CoV-2. Moreover, nanoparticles can serve as a carrier for antigens or as an adjuvant, thereby making way for the development of a new generation of vaccines. The present review elaborates the role of nanotechnology-based tactics used for the detection, diagnosis, protection, and treatment of COVID-19 caused by the SARS-CoV-2 virus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310263PMC
http://dx.doi.org/10.3390/v13071224DOI Listing

Publication Analysis

Top Keywords

covid-19 caused
8
covid-19
5
nanotechnology shield
4
shield covid-19
4
covid-19 current
4
current advancement
4
advancement limitations
4
limitations coronavirus
4
coronavirus disease
4
disease 2019
4

Similar Publications

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Phenotypic Classification of Multisystem Inflammatory Syndrome in Children Using Latent Class Analysis.

JAMA Netw Open

January 2025

Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.

Importance: Multisystem inflammatory syndrome in children (MIS-C) is an uncommon but severe hyperinflammatory illness that occurs 2 to 6 weeks after SARS-CoV-2 infection. Presentation overlaps with other conditions, and risk factors for severity differ by patient. Characterizing patterns of MIS-C presentation can guide efforts to reduce misclassification, categorize phenotypes, and identify patients at risk for severe outcomes.

View Article and Find Full Text PDF

Background: Feline diarrhea is a common digestive tract disease in clinical practice, with watery feces as the main clinical manifestation. There are numerous pathogenic factors causing feline diarrhea, among which viral infections are prevalent, and feline panleukopenia virus (FPV) is the most common pathogen. In recent years, a variety of novel viruses have been detected in the intestines of cats with diarrhea.

View Article and Find Full Text PDF

Objectives: To describe changes in the volume and types of emergency medical services (EMS) calls for children during the COVID-19 pandemic and after availability of the COVID-19 vaccine ("reopening period").

Methods: A retrospective cross-sectional study of EMS 9-1-1 responses to children under 18 years for all causes over a 4-year period (2019-2022) reported in the National Emergency Medical Services Information System (NEMSIS) dataset. Data was stratified into three periods, Pre-pandemic, Pandemic and Reopening.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!