In this work, we tried to analyze dust loading behavior of polypropylene hollow fiber membranes using average pressure drop models. Hollow fiber membranes varying in fiber diameter were loaded with a standardized test dust to simulate particle-polluted air. We measured pressure drop development of the membranes at different flowrates and dust concentrations, and, after each experiment, the dust deposited on the membrane fibers was weighed to obtain dust holding capacity (DHC). The obtained experimental data was analyzed using various average pressure drop models and compared with average pressure drop obtained from pressure drop/dust load dependence using a curve fit. Exponential and polynomial fitting was used and compared. Pressure drop in relation to the dust load followed different trends depending on the experimental conditions and inner fiber diameter. At higher flowrate, the dependence was polynomial no matter what the fiber diameter. However, with higher fiber diameter at lower permeate velocities, the dependence was close to exponential curve and followed similar trends as observed in planar filter media. Dust-holding capacity of the membranes depended on the experimental conditions and was up to 21.4 g. However, higher dust holding capacity was impossible to reach no matter the experiment duration due to self-cleaning ability of the tested membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8306576 | PMC |
http://dx.doi.org/10.3390/membranes11070467 | DOI Listing |
Int J Gynaecol Obstet
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
Pulmonary sequestration is a rare pulmonary malformation, typically characterized by asymptomatic presentation or recurrent pulmonary infections, with chest pain and hemothorax being exceedingly rare occurrences. The rupture and hemorrhage of maternal pulmonary sequestration during pregnancy pose a life-threatening condition that is challenging to diagnose. We present a case of a 37-year-old pregnant woman in her third trimester who presented with acute progressive hemothorax, a complication arising from maternal pulmonary sequestration.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo, São Paulo, SP 05508-030, Brazil.
Labyrinth seals (LSs) in turbomachinery are used to minimize leaks. This study presents an experimental setup designed to test and validate LS designs. The test bench (TB) described in this paper can evaluate different LS designs obtained through various methods to find better solutions to mitigate greenhouse gas (GHG) emissions.
View Article and Find Full Text PDFEuropace
January 2025
Department of Clinical Sciences, Lund University, Malmö, Sweden.
Background: Orthostatic hypotension (OH) is an important differential diagnosis in unexplained syncope. Neurogenic OH (nOH) has been postulated to differ from non-neurogenic OH (non-nOH), yet pathophysiological differences are largely unexplored. We aimed to investigate etiology and tilt table test (TTT)-induced hemodynamic responses in symptomatic OH patients.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, United States.
Purpose: Vascular impairments, including reduced capillary density (CD), impaired autoregulation capacity (Reg), and elevated intraocular pressure (IOP), have been identified as significant contributors to glaucomatous disease. This study implemented a theoretical model to quantify the impact of these impairments on retinal blood flow and oxygenation as intraluminal pressure (Pa) is varied.
Methods: A theoretical model of the retinal vasculature was used to simulate reductions in CD by 10% (early glaucoma) and 30% to 50% (advanced glaucoma), a range in autoregulation capacity from 0% (totally impaired) to 100% (totally functional), and normal (15 mm Hg) and elevated (25 mm Hg) levels of IOP.
Mar Environ Res
January 2025
Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.
This study examines the seasonal variations in carbonate system parameters in the East China Sea (ECS) off the Yangtze River estuary (YRE) and analyzes the contributions of anthropogenic CO₂ and eutrophication to acidification. Carbonate parameters data were collected during summer 2019 and combined winter 2011. During winter, acidification is primarily driven by rising atmospheric CO₂, with minimal impact from biological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!