Perfluorosulfonated ionomers are the most successful ion-exchange membranes at an industrial scale. One recent, cutting-edge application of perfluorosulfonated ionomers is in polymer electrolyte fuel cells (PEFCs). In PEFCs, the ionomers are used as a component of the catalyst layer (CL) in addition to functioning as a proton-exchange membrane. In this study, the microstructures in the CLs of PEFCs were characterized by combined synchrotron X-ray scattering and transmission electron microscopy (TEM) analyses. The CL comprised a catalyst, a support, and an ionomer. Fractal dimensional analysis of the combined ultrasmall- and small-angle X-ray scattering profiles indicated that the carbon-black-supported Pt catalyst (Pt/CB) surface was covered with the ionomer in the CL. Anomalous X-ray scattering revealed that the Pt catalyst nanoparticles on the carbon surfaces were aggregated in the CLs. These findings are consistent with the ionomer/catalyst microstructures and ionomer coverage on the Pt/CB surface obtained from TEM observations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8307432PMC
http://dx.doi.org/10.3390/membranes11070466DOI Listing

Publication Analysis

Top Keywords

x-ray scattering
12
polymer electrolyte
8
electrolyte fuel
8
perfluorosulfonated ionomers
8
pt/cb surface
8
catalyst
5
microstructure investigation
4
investigation polymer
4
fuel cell
4
cell catalyst
4

Similar Publications

To compare 1D (linear) tumor volume calculations and classification systems with 3D-segmented volumetric analysis (SVA), focusing specifically on their effectiveness in the evaluation and management of NF2-associated vestibular schwannomas (VS). VS were clinically followed every 6 months with cranial, thin-sliced (< 3 mm) MRI. We retrospectively reviewed and used T1-weighted post-contrast enhanced (gadolinium) images for both SVA and linear measurements.

View Article and Find Full Text PDF

Hypothesis: Due to its huge polar headgroup, octaoxyethylene octyl ether carboxylic acid (CECHCOOH = Akypo LF2™) is supposed not to be able to change its curvature sufficiently to form bicontinuous microemulsions. Instead, upon adding an oil to the binary water - surfactant system, excess oil could be squeezed out or a biliquid foam could form.

Experiments: An auto-dilution setup was used to record small-angle X-ray scattering data along six dilution lines in the newly established phase diagram of the ternary system 2-ethylhexanol - CECHCOOH - water.

View Article and Find Full Text PDF

Exploring the Unique Properties and Superior Schwann Cell Guiding Abilities of Spider Egg Sac Silk.

ACS Appl Bio Mater

January 2025

Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.

Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.

View Article and Find Full Text PDF

In this article we describe research on the synthesis and characterization of a family of "Janus" amphiphiles composed of disaccharide head groups and alkaloid units joined together via a methylene linker, and bearing a lateral aliphatic chain of varying length. The condensed phases formed by self-organization of the products as a function of temperature were characterized by differential scanning calorimetry, thermal polarized light microscopy, and small angle X-ray scattering, allied with computational modelling and simulations. Structural studies on heating specimens from the solid showed that some homologues exhibited lamellar, columnar and bicontinuous mesophases, whereas the same homologues revealed different phase sequences on cooling from the amorphous liquid.

View Article and Find Full Text PDF

Eye lens dosimetry: does the direction of rotation (vertical or horizontal) play a role in type testing?

J Radiol Prot

January 2025

Radiation Protection Dosimetry (6.3), Physikalisch-Technische Bundesanstalt, Braunschweig, NDS, GERMANY.

With the International Commission on Radiological Protection (ICRP) lowering the annual dose limit for the eye lens to 20 mSv, precise monitoring of eye lens exposure has become essential. The personal dose equivalent at a depth of 3 mm, Hp(3), is the measurement method for monitoring the dose to the lens of the eye. Traditional dosimetry methods primarily address lateral radiation exposure scenarios, where radiation approaches from the left or right, necessitating the rotation of the phantom during type testing around the vertical axis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!