Aging occurs along with multiple pathological problems in various organs. The aged brain, especially, shows a reduction in brain mass, neuronal cell death, energy dysregulation, and memory loss. Brain aging is influenced by altered metabolites both in the systemic blood circulation and the central nervous system (CNS). High levels of ammonia, a natural by-product produced in the body, have been reported as contributing to inflammatory responses, energy metabolism, and synaptic function, leading to memory function in CNS. Ammonia levels in the brain also increase as a consequence of the aging process, ultimately leading to neuropathological problems in the CNS. Although many researchers have demonstrated that the level of ammonia in the body alters with age and results in diverse pathological alterations, the definitive relationship between ammonia and the aged brain is not yet clear. Thus, we review the current body of evidence related to the roles of ammonia in the aged brain. On the basis of this, we hypothesize that the modulation of ammonia level in the CNS may be a critical clinical point to attenuate neuropathological alterations associated with aging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268635PMC
http://dx.doi.org/10.3390/jcm10132773DOI Listing

Publication Analysis

Top Keywords

aged brain
12
brain aging
8
ammonia aged
8
brain
7
ammonia
6
aging
5
cerebral ammonia
4
ammonia brain
4
aging blood-brain
4
blood-brain barrier
4

Similar Publications

Persistent COVID-19 symptoms and associated factors in a tertiary hospital in Thailand.

J Infect Dev Ctries

December 2024

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand.

Introduction: Coronavirus disease 2019 (COVID-19) is associated with long-term symptoms, but the spectrum of these symptoms remains unclear. We aimed to identify the prevalence and factors associated with persistent symptoms in patients at the post-COVID-19 outpatient clinic.

Methodology: This cross-sectional, observational study included hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients followed-up at a post-COVID-19 clinic between September 2021 and January 2022.

View Article and Find Full Text PDF

Blood-based epigenome-wide association study and prediction of alcohol consumption.

Clin Epigenetics

January 2025

Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.

Alcohol consumption is an important risk factor for multiple diseases. It is typically assessed via self-report, which is open to measurement error through recall bias. Instead, molecular data such as blood-based DNA methylation (DNAm) could be used to derive a more objective measure of alcohol consumption by incorporating information from cytosine-phosphate-guanine (CpG) sites known to be linked to the trait.

View Article and Find Full Text PDF

Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.

View Article and Find Full Text PDF

Persistent Postural-Perceptual Dizziness (PPPD) is a common cause of chronic vestibular syndrome. Although previous studies have identified central abnormalities in PPPD, the specific neural circuits and the alterations in brain network topological properties, and their association with dizziness and postural instability in PPPD remain unclear. This study includes 30 PPPD patients and 30 healthy controls.

View Article and Find Full Text PDF

Human behavior is strongly influenced by anticipation, but the underlying neural mechanisms are poorly understood. We obtained intracranial electrocephalography (iEEG) measurements in neurosurgical patients as they performed a simple sensory-motor task with variable (short or long) foreperiod delays that affected anticipation of the cue to respond. Participants showed two forms of anticipatory response biases, distinguished by more premature false alarms (FAs) or faster response times (RTs) on long-delay trials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!