The use of magnetism in medicine has changed dramatically since its first application by the ancient Greeks in 624 BC. Now, by leveraging magnetic nanoparticles, investigators have developed a range of modern applications that use external magnetic fields to manipulate biological systems. Drug delivery systems that incorporate these particles can target therapeutics to specific tissues without the need for biological or chemical cues. Once precisely located within an organism, magnetic nanoparticles can be heated by oscillating magnetic fields, which results in localized inductive heating that can be used for thermal ablation or more subtle cellular manipulation. Biological imaging can also be improved using magnetic nanoparticles as contrast agents; several types of iron oxide nanoparticles are US Food and Drug Administration (FDA)-approved for use in magnetic resonance imaging (MRI) as contrast agents that can improve image resolution and information content. New imaging modalities, such as magnetic particle imaging (MPI), directly detect magnetic nanoparticles within organisms, allowing for background-free imaging of magnetic particle transport and collection. "Lab-on-a-chip" technology benefits from the increased control that magnetic nanoparticles provide over separation, leading to improved cellular separation. Magnetic separation is also becoming important in next-generation immunoassays, in which particles are used to both increase sensitivity and enable multiple analyte detection. More recently, the ability to manipulate material motion with external fields has been applied in magnetically actuated soft robotics that are designed for biomedical interventions. In this review article, the origins of these various areas are introduced, followed by a discussion of current clinical applications, as well as emerging trends in the study and application of these materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309177 | PMC |
http://dx.doi.org/10.3390/pharmaceutics13070943 | DOI Listing |
Prep Biochem Biotechnol
January 2025
Department of Physical Science, Sant Baba Bagh Singh University, Jalandhar, Punjab, India.
Fungal lipases are the leading industrial biocatalyst due to their broad applications, but high cost limits their commercial usage. The low-cost agri-residues substrates can reduce the cost of lipase production. However, the compatibility of agri-residue with fungal species, recovery process of lipase and stability of the enzyme are crucial steps.
View Article and Find Full Text PDFSmall
January 2025
Department of Nuclear Medicine, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
Molecular imaging has significantly advanced the detection and analysis of in vivo metabolic processes, while single-modal techniques remain limited. Dual-modal imaging, particularly positron emission tomography (PET)-based combinations has emerged as a powerful solution, offering enhanced capabilities through integration with magnetic resonance imaging (MRI) or near-infrared fluorescence (NIRF) imaging. This review highlights recent progress in PET-based dual-modal imaging, focusing on the development of various bimodal probes derived from antibodies, nanoparticles, and peptides, and key applications including image-guided surgery and disease assessment.
View Article and Find Full Text PDFHospital wastewater (HWW) is a major pollutant that presents significant risks to both environmental and human health. In this study, we developed a novel, inexpensive and highly antibacterial magnetic nanocomposite composed of FeO nanoparticles synthesised from spent pickling liquors, coated with chitosan and then integrated with polyhexamethylene guanidine hydrochloride (FeO@CS@PHMG) using sodium tripolyphosphate (TPP) as a crosslinking agent. The obtained results revealed that the synthesised nanocomposite exhibited high antibacterial activity against and .
View Article and Find Full Text PDFDalton Trans
January 2025
Center for Research, Innovation, Development, and Applications (CRIDA), Jaiotec Labs (OPC) Private Limited, Amaravati, AP, 522503, India.
The existing demand for the development of innovative multimodal imaging nanomaterial probes for biomedical applications stems from their unique combination of dual response modalities, , photoluminescence (PL) and magnetic resonance imaging (MRI). In this study, for the first time, neodymium (Nd) and dysprosium (Dy) rare earth (RE) metal ions were co-doped into a hydroxyapatite (HAp) crystal lattice using a simple microwave-assisted synthesis technique to incorporate the essential properties of both the lanthanides in HAp. Theoretical as well as experimental studies were performed on novel Nd:Dy:HAp nanoparticles (NPs) to understand their photoluminescence and magnetic behaviour.
View Article and Find Full Text PDFSci Rep
January 2025
College of Engineering, Applied Science University (ASU), Manama, Kingdom of Bahrain.
This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!