The progression of non-alcoholic fatty liver (NAFL) into non-alcoholic steatohepatitis implicates multiple mechanisms, chief of which is mitochondrial dysfunction. However, the sequence of events underlying mitochondrial failure are still poorly clarified. In this work, male C57BL/6J mice were fed with a high-fat plus high-sucrose diet for 16, 20, 22, and 24 weeks to induce NAFL. Up to the 20th week, an early mitochondrial remodeling with increased OXPHOS subunits levels and higher mitochondrial respiration occurred. Interestingly, a progressive loss of mitochondrial respiration along "Western diet" feeding was identified, accompanied by higher susceptibility to mitochondrial permeability transition pore opening. Importantly, our findings prove that mitochondrial alterations and subsequent impairment are independent of an excessive mitochondrial reactive oxygen species (ROS) generation, which was found to be progressively diminished along with disease progression. Instead, increased peroxisomal abundance and peroxisomal fatty acid oxidation-related pathway suggest that peroxisomes may contribute to hepatic ROS generation and oxidative damage, which may accelerate hepatic injury and disease progression. We show here for the first time the sequential events of mitochondrial alterations involved in non-alcoholic fatty liver disease (NAFLD) progression and demonstrate that mitochondrial ROS are not one of the first hits that cause NAFLD progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268944PMC
http://dx.doi.org/10.3390/ijms22136848DOI Listing

Publication Analysis

Top Keywords

mitochondrial
11
mitochondrial ros
8
non-alcoholic fatty
8
fatty liver
8
mitochondrial respiration
8
mitochondrial alterations
8
ros generation
8
disease progression
8
nafld progression
8
progression
5

Similar Publications

Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.

Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.

View Article and Find Full Text PDF

Modular Metabolic Engineering of for Enhanced Production of Ursolic Acid.

J Agric Food Chem

January 2025

State Key Laboratory of Synthetic Biology, School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin 300350, China.

Ursolic acid, a plant-derived pentacyclic triterpenoid with anti-inflammatory, antioxidant, and other bioactive properties, holds significant potential for use in nutritional supplements and drug development. However, its extraction from medicinal plants is inefficient due to low yield and dependence on seasonality and geography. Herein, we use modular metabolic engineering to enhance ursolic acid production in by dividing the biosynthetic pathway into five modules.

View Article and Find Full Text PDF

Ultrasound-Activated Copper Matrix Nanosonosensitizer for Cuproptosis-Based Synergy Therapy.

ACS Appl Bio Mater

January 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.

Cuproptosis exhibits enormous application prospects in treatment. However, cuproptosis-based therapy is impeded by the limited intracellular copper ions, the nonspecific delivery, uncontrollable release, and chelation of endogenous overproduced glutathione (GSH). In this work, an ultrasound-triggered nanosonosensitizer (p-TiO-Cu(I)) was constructed for Cu(I) delivery, on-demand release, GSH consumption, and deeper tissue response.

View Article and Find Full Text PDF

Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation.

View Article and Find Full Text PDF

Uncovering the intricacies of IGF-1 in Alzheimer's disease: new insights from regulation to therapeutic targeting.

Inflammopharmacology

January 2025

Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-β plaques and tau tangles, leading to cognitive decline and dementia. Insulin-like Growth Factor-1 (IGF-1) is similar in structure to insulin and is crucial for cell growth, differentiation, and regulating oxidative stress, synaptic plasticity, and mitochondrial function. IGF-1 exerts its physiological effects by binding to the IGF-1 receptor (IGF-1R) and activating PI3K/Akt pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!