Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A potential rise in interest in the Internet of Things in the upcoming years is expected in the fields of healthcare, supply chain, logistics, industries, smart cities, smart homes, cyber physical systems, etc. This paper discloses the fusion of the Internet of Things (IoT) with the so-called "distributed ledger technology" (DLT). IoT sensors like temperature sensors, motion sensors, GPS or connected devices convey the activity of the environment. Sensor information acquired by such IoT devices are then stored in a blockchain. Data on a blockchain remains immutable however its scalability still remains a challenging issue and thus represents a hindrance for its mass adoption in the IoT. Here a communication system based on IOTA and DLT is discussed with a systematic architecture for IoT devices and a future machine-to-machine (M2M) economy. The data communication between IoT devices is analyzed using multiple use cases such as sending DHT-11 sensor data to the IOTA tangle. The value communication is analyzed using a novel "micro-payment enabled over the top" (MP-OTT) streaming platform that is based on the "pay-as-you-go" and "consumption based" models to showcase IOTA value transactions. In this paper, we propose an enhancement to the classical "masked authenticated message" (MAM) communication protocol and two architectures called dual signature masked authenticated message (DSMAM) and index-based address value transaction (IBAVT). Further, we provided an empirical analysis and discussion of the proposed techniques. The implemented solution provides better address management with secured sharing and communication of IoT data, complete access control over the ownership of data and high scalability in terms of number of transactions that can be handled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8271827 | PMC |
http://dx.doi.org/10.3390/s21134354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!