Mine water is normally considered as waste that has to be managed. However, new applications are increasingly being sought for the water that floods mining voids, especially in relation to its use as an energy resource. The worldwide energy market, within the current transition framework, is searching for creative approaches to produce and store clean energy. In particular, underground pumped hydroelectric energy storage systems (UPHS) constitute efficient and flexible alternatives to deal with intermittent renewable energy sources. In this work, a UPHS is designed using the mine water and the voids of a closed coal mine in Asturias (North-west Spain) as a lower reservoir. Moreover, this system is combined with a wind energy generation facility and the efficiency of the hybrid system is evaluated. With an investment cost of EUR 193 M, a 40 MW UPHES joined to a 60 MW wind farm would generate benefits of about EUR 54 M in 40 years. The reduction in CO emissions (29,000 equivalent tons per year) and the social benefits in a traditional mining area are other intangible advantages of this system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268712 | PMC |
http://dx.doi.org/10.3390/ijerph18136758 | DOI Listing |
Sci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing, China.
Exploring the response relationship between civil war, population and land cover change is of great practical significance for social stability in Myanmar. However, the ongoing civil war in Myanmar hinders direct understanding of the situation on the ground, which in turn limits detailed study of the intricate relationship between the dynamics of the civil war and its impact on population and land. Therefore, this paper explores the response relationship between civil war conflict and population and land cover change in Myanmar from 2010 to 2020 from the perspective of remote sensing using the land cover data we produced, the open spatial demographics data, and the armed conflict location and event data project.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Land Science and Technology, China University of Geosciences, 29 Xueyuan Road, Haidian District, 100083, Beijing, People's Republic of China.
Limiting adverse consequences of mining activities requires ecosystem restoration efforts, whose arrangement around mining areas is poorly designed. It is unclear, however, where best to locate ecological projects to enhance ecosystem services cost-effectively. To answer this question, we conducted an optimized ecological restoration project planning by the Resource Investment Optimization System (RIOS) model to identify the restoration priority areas in the Pingshuo Opencast Coal Mine region in Shanxi Province.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Water Resources Development and Management, Indian Institute of Technology, Roorkee, Uttarakhand, India.
The rapid urbanization, industrial growth, and socio-cultural activities along riverbanks in hilly cities are transforming land use and intensifying water infrastructure challenges. Paonta Sahib, a culturally significant town in Himachal Pradesh on the Yamuna River, along the foothills of the Himalayas exemplifies these pressures due to its religious tourism, industrialization, and mining activities. This study explores sustainable riverfront development at Paonta Sahib, addressing socio-cultural, environmental, and technical concerns essential for eco-sensitive urban planning.
View Article and Find Full Text PDFHeliyon
November 2024
Department of Mining Engineering, Faculty of Engineering, Hadimkoy Campus, Istanbul University - Cerrahpasa, 34500, Istanbul, Turkiye.
One of the challenges encountered in mining is acid mine drainage (AMD) in sulphurous ores in response to rainfall and groundwater. CPB one of the most prevalent waste management systems addresses this issue today. Nevertheless, in the long term, the concretion in CPB may become ineffective because of external factors, such as groundwater and rainfall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!