Cellular senescence, a stress-induced state of irreversible cell cycle arrest, is associated with organ dysfunction and age-related disease. While immortalized cell lines bypass key pathways of senescence, important mechanisms of cellular senescence can be studied in primary cells. Primary tubular epithelial cells (PTEC) derived from mouse kidney are highly susceptible to develop cellular senescence, providing a valuable tool for studying such mechanisms. Here, we tested whether genetic differences between mouse inbred strains have an impact on the development of stress-induced cellular senescence in cultured PTEC. Kidneys from 129S1, B6, NOD, NZO, CAST, and WSB mice were used to isolate PTEC. Cells were monitored for expression of typical senescence markers (SA-β-galactosidase, γ-H2AX+/Ki67-, expression levels of CDKN2A, lamin B1, IL-1a/b, IL-6, G/M-CSF, IFN-g, and KC) at 3 and 10 days after pro-senescent gamma irradiation. Clear differences were found between PTEC from different strains with the highest senescence values for PTEC from WSB mice and the lowest for PTEC from 129S1 mice. PTEC from B6 mice, the most commonly used inbred strain in senescence research, had a senescence score lower than PTEC from WSB and CAST mice but higher than PTEC from NZO and 129S1 mice. These data provide new information regarding the influence of genetic diversity and help explain heterogeneity in existing data. The observed differences should be considered when designing new experiments and will be the basis for further investigation with the goal of identifying candidate loci driving pro- or anti-senescent pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229707 | PMC |
http://dx.doi.org/10.3390/cells10061437 | DOI Listing |
Alzheimers Dement
December 2024
Institute of Neurosciences, University of Barcelona, Barcelona, Catalunya, Spain.
Background: Senescence is a cellular response to stress or damage leading to a state of irreversible growth arrest. As we age, the number of senescent cells increases and directly contributes to age-related conditions including cancer and neurodegenerative diseases. As a result, there is a growing interest to therapeutically target senescence either with drugs eliminating senescent cells (senolytics) or with strategies to modulate their secretory phenotype among others.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by hallmark pathologies that affect many brain regions, including the cellular microenvironment with the hippocampus, ultimately leading to profound deficits in cognition. Surprising recent work has shown that factors in the systemic environment regulate the hippocampal cellular niche; age-associated blood-borne factors exacerbate brain aging phenotypes, whereas youth-associated blood-borne factors, including tissue inhibitor of metalloproteinases 2 (TIMP2), reverse or ameliorate features of brain aging. As aging serves as the major risk factor for AD, and recent work shows that systemic factors can regulate AD pathology, we sought to characterize mechanisms by which the systemic environment regulates CNS phenotypes relevant to AD pathology through changes in neuroinflammation.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Texas Medical Branch, Galveston, TX, USA.
Background: Rodent models have been proved pivotal in Alzheimer's disease (AD) research. Nevertheless, the use of models that only recapitulate one aspect of AD neuropathology, and of early time points that might be excluding important features such as age-dependent inflammation and senescence, could hinder the development of effective AD therapeutics. Several tau immunotherapies are currently undergoing clinical trial.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC School of Pharmacy, Los Angeles, CA, USA.
Background: Cellular senescence is a hallmark of aging and has been implicated in several neurodegenerative diseases including Alzheimer's disease (AD). Senescence cells undergo changes in gene expression and metabolism and can exhibit a so-called "senescence-associated secretory phenotype" (SASP) characterized by increased secretion of pro-inflammatory molecules and factors which can damage nearby cells, contributing to AD pathology progression.
Method: In this study, we determined mechanisms of cellular senescence using human postmortem brain samples, cellular models, and APOE4 animal models.
Alzheimers Dement
December 2024
University of Kansas Medical Center, Kansas City, KS, USA.
Background: Mitochondrial dysfunction is an early and prominent feature of Alzheimer's disease (AD). We have recently published that lower brain mitochondrial DNA copy number (mtDNAcn) is associated with increased risk of AD neuropathological change and reduced cognitive performance. Here, we addressed how mtDNAcn affects cell-type specific phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!