A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In Situ Generation of Green Hybrid Nanofibrillar Polymer-Polymer Composites-A Novel Approach to the Triple Shape Memory Polymer Formation. | LitMetric

In Situ Generation of Green Hybrid Nanofibrillar Polymer-Polymer Composites-A Novel Approach to the Triple Shape Memory Polymer Formation.

Polymers (Basel)

Univ. Lille, IMT Lille Douai, Univ. Artois, JUNIA, ULR 4515-LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.

Published: June 2021

The paper discusses the possibility of using in situ generated hybrid polymer-polymer nanocomposites as polymeric materials with triple shape memory, which, unlike conventional polymer blends with triple shape memory, are characterized by fully separated phase transition temperatures and strongest bonding between the polymer blends phase interfaces which are critical to the shape fixing and recovery. This was demonstrated using the three-component system polylactide/polybutylene adipateterephthalate/cellulose nanofibers (PLA/PBAT/CNFs). The role of in situ generated PBAT nanofibers and CNFs in the formation of efficient physical crosslinks at PLA-PBAT, PLA-CNF and PBAT-CNF interfaces and the effect of CNFs on the PBAT fibrillation and crystallization processes were elucidated. The in situ generated composites showed drastically higher values of strain recovery ratios, strain fixity ratios, faster recovery rate and better mechanical properties compared to the blend.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8226873PMC
http://dx.doi.org/10.3390/polym13121900DOI Listing

Publication Analysis

Top Keywords

triple shape
12
shape memory
12
situ generated
12
polymer blends
8
situ
4
situ generation
4
generation green
4
green hybrid
4
hybrid nanofibrillar
4
nanofibrillar polymer-polymer
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!