Photogrammetric Process to Monitor Stress Fields Inside Structural Systems.

Sensors (Basel)

Department of Electrical Engineering, UFJF, Juiz de Fora 36036-900, MG, Brazil.

Published: June 2021

This research employs displacement fields photogrammetrically captured on the surface of a solid or structure to estimate real-time stress distributions it undergoes during a given loading period. The displacement fields are determined based on a series of images taken from the solid surface while it experiences deformation. Image displacements are used to estimate the deformations in the plane of the beam surface, and Poisson's Method is subsequently applied to reconstruct these surfaces, at a given time, by extracting triangular meshes from the corresponding points clouds. With the aid of the measured displacement fields, the Boundary Element Method (BEM) is considered to evaluate stress values throughout the solid. Herein, the unknown boundary forces must be additionally calculated. As the photogrammetrically reconstructed deformed surfaces may be defined by several million points, the boundary displacement values of boundary-element models having a convenient number of nodes are determined based on an optimized displacement surface that best fits the real measured data. The results showed the effectiveness and potential application of the proposed methodology in several tasks to determine real-time stress distributions in structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230454PMC
http://dx.doi.org/10.3390/s21124023DOI Listing

Publication Analysis

Top Keywords

displacement fields
12
real-time stress
8
stress distributions
8
determined based
8
displacement
5
photogrammetric process
4
process monitor
4
stress
4
monitor stress
4
fields
4

Similar Publications

Design and experimental study of tillage depth control system for electric rotary tiller based on LADRC.

Sci Rep

January 2025

The Key Laboratory for Agricultural Machinery Intelligent Control and Manufacturing of Fujian Education Institutions, Wuyi University, Nanping, 354300, Fujian, China.

This paper proposes an adaptive real-time tillage depth control system for electric rotary tillers, based on Linear Active Disturbance Rejection Control (LADRC), to improve tillage depth accuracy in tea garden intercropping with soybeans. The tillage depth control system comprises a body posture sensor, a control unit, and a hybrid stepper motor, integrating sensor data to drive the motor and achieve precise depth control. Real-time displacement sensor signals are compared with target values, enabling closed-loop control of the rotary tiller.

View Article and Find Full Text PDF

Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect.

View Article and Find Full Text PDF

In naval engineering, particular attention has been given to containerships, as these structures are constantly exposed to potential damage during service hours and since they are essential for large-scale transportation. To assess the structural integrity of these ships and to ensure the safety of the crew and the cargo being transported, it is essential to adopt structural health monitoring (SHM) strategies that enable real-time evaluations of a ship's status. To achieve this, this paper introduces an advancement in the field of smart sensing and SHM that improves ship monitoring and diagnostic capabilities.

View Article and Find Full Text PDF

This paper investigates the use of the BOTDA (Brillouin Optical Time-Domain Analysis) technology to monitor a large-scale bored pile wall in the field. Distributed fiber optic sensors (DFOSs) were deployed to measure internal temperature and strain changes during cement grouting, hardening, and excavation-induced deformation of a secant pile wall. The study details the geological conditions and DFOS installation process.

View Article and Find Full Text PDF

A Submicrosecond-Response Ultrafast Microwave Ranging Method Based on Optically Generated Frequency-Modulated Pulses.

Sensors (Basel)

December 2024

National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 622150, China.

An ultrafast microwave ranging method based on optically generated frequency-modulated microwave pulses is proposed in this study. The theoretical analysis demonstrated that nanosecond-scale linear frequency modulation microwave pulse can be obtained by femtosecond laser interference under the condition of unbalanced dispersion, which can be used to achieve a high temporal resolution of the displacement change in the measurement by the principle of frequency modulation continuous wave (FMCW) radar. The proof-of-principle experiment successfully measured the displacement change with an error of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!