Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230417PMC
http://dx.doi.org/10.3390/cells10061460DOI Listing

Publication Analysis

Top Keywords

viral inclusion
16
inclusion bodies
16
biomolecular condensates
16
viral
14
biogenesis viral
8
viral ibs
8
perspectives biogenesis
4
inclusion
4
bodies
4
bodies negative-sense
4

Similar Publications

Protective or limited? Maternal antibodies and RSV-associated lower respiratory tract infection in hospitalized infants aged 28-90 days.

Front Immunol

January 2025

Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: Respiratory syncytial virus (RSV) is a major cause of severe health problems in newborns and young children. The protective role and limitations of serum maternal RSV antibodies in infants under 3 months remain controversial.

Methods: A two-center prospective study from 2020 to 2023 recruited infants (n=286) admitted to the respiratory departments of two children's hospitals in southwestern and southeastern China during RSV epidemic.

View Article and Find Full Text PDF

PAV-05 Naphthoquinone Potently Inhibit Zika Virus Replication in Infected Cells.

Curr Top Med Chem

January 2025

Universidade Federal Fluminense, Instituto de Biologia, Laboratório de Virologia Molecular e Biotecnologia Marinha, 24210-200, Niterói-RJ, Brasil.

Background: Zika (ZIKV) is a virus transmitted by mosquitoes that can cause Guillain- Barré syndrome and congenital malformations like microcephaly. Given its explosive resurgence and the resulting epidemics in 2016, the search for effective antiviral drugs has become absolutely necessary.

Methods: In this study, we examined the potential of naphthoquinone derivatives that have a sulfonamide or sulfonate group to inhibit ZIKV replication in primary cultured neurons and in Vero cells.

View Article and Find Full Text PDF

Background: Mpox is a viral zoonotic disease that has seen a resurgence in recent years, with outbreaks reaching beyond its traditional endemic zones in Central and West Africa to parts of Europe and North America. The relationship between human immunodeficiency virus (HIV) infection and mpox outcomes, particularly hospitalization rates, remains underexplored despite the known immunosuppressive effects of HIV. This systematic review and meta-analysis aimed to clarify the association between HIV infection and the likelihood of hospitalization in mpox cases.

View Article and Find Full Text PDF

Detection of Tilapia parvovirus in farm-reared tilapia in India and its isolation using fish cell lines.

In Vitro Cell Dev Biol Anim

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, (Affiliated to Thiruvalluvar University), Melvisharam, Tamil Nadu, India.

Tilapia parvovirus (TiPV) is an emerging viral pathogen and responsible for severe economic loss in tilapia culture production. Lethargic, cutaneous haemorrhages; ocular lesions; discolouration of gill and cloudy eye and exophthalmia are common symptoms of TiPV. The TiPV-suspected tilapia fish were collected from grow-out ponds situated in different parts of Tamil Nadu, India, and screened for TiPV by PCR.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T-cell therapy is a breakthrough in the field of cancer immunotherapy, wherein T cells are genetically modified to recognize and attack cancer cells. Delivery of the CAR gene is a critical step in this therapy and is usually achieved by transducing patient T cells with a lentiviral vector (LV). Because the LV is an essential component of CAR-T manufacturing, there is a need for simple bioassays that reflect the mechanism of action (MOA) of the LV and can measure LV potency with accuracy and specificity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!