Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The study of low-molecular-weight metabolites that exist in cells and organisms is known as metabolomics and is often conducted using mass spectrometry laboratory platforms. Definition of oncometabolites in the context of the metabolic phenotype of cancer cells has been accomplished through metabolomics. Oncometabolites result from mutations in cancer cell genes or from hypoxia-driven enzyme promiscuity. As a result, normal metabolites accumulate in cancer cells to unusually high concentrations or, alternatively, unusual metabolites are produced. The typical oncometabolites fumarate, succinate, (2)-hydroxyglutarate and (2)-hydroxyglutarate inhibit 2-oxoglutarate-dependent dioxygenases, such as histone demethylases and HIF prolyl-4-hydroxylases, together with DNA cytosine demethylases. As a result of the cancer cell acquiring this new metabolic phenotype, major changes in gene transcription occur and the modification of the epigenetic landscape of the cell promotes proliferation and progression of cancers. Stabilization of HIF1α through inhibition of HIF prolyl-4-hydroxylases by oncometabolites such as fumarate and succinate leads to a pseudohypoxic state that promotes inflammation, angiogenesis and metastasis. Metabolomics has additionally been employed to define the metabolic phenotype of cancer cells and patient biofluids in the search for cancer biomarkers. These efforts have led to the uncovering of the putative oncometabolites sarcosine, glycine, lactate, kynurenine, methylglyoxal, hypotaurine and (2,3)-dihydroxybutanoate, for which further research is required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8229816 | PMC |
http://dx.doi.org/10.3390/cancers13122900 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!