Towards Oxidatively Stable Emulsions Containing Iron-Loaded Liposomes: The Key Role of Phospholipid-to-Iron Ratio.

Foods

Food Process Engineering Group, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands.

Published: June 2021

To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids (phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82-99%). The iron concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were stable, whereas at higher concentrations (10 and 48 mM), phospholipid oxidation was considerably higher. When applied in oil-in-water (O/W) emulsions, emulsions with liposomes containing low iron concentrations were much more stable to lipid oxidation than those added with liposomes containing higher iron concentrations, even though the overall iron concentration was similar (0.1 M). Iron-loaded liposomes thus have an antioxidant effect at high phospholipid-to-iron ratio, but act as pro-oxidants when this ratio is too low, most likely as a result of oxidation of the phospholipids themselves. This non-monotonic effect can be of crucial importance in the design of iron-fortified foods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8230301PMC
http://dx.doi.org/10.3390/foods10061293DOI Listing

Publication Analysis

Top Keywords

iron-loaded liposomes
8
phospholipid-to-iron ratio
8
iron concentration
8
iron concentrations
8
liposomes
6
iron
5
oxidatively stable
4
stable emulsions
4
emulsions iron-loaded
4
liposomes key
4

Similar Publications

Photothermal nanozyme-ignited Fenton reaction-independent ferroptosis for breast cancer therapy.

J Control Release

November 2021

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Ferroptosis is a type of programmed cell death caused by the iron-dependent lipid hydroperoxide pathway and has attracted significant interest. However, Fenton reaction-dependent ferroptosis has shown unsatisfactory therapeutic effects in tumor therapy, mainly due to inadequate reaction conditions in the tumor microenvironment. Here, we report a new strategy for Fenton-independent pathway by employing photothermal nanozyme to overcome limitations of the low efficiency of Fenton reaction.

View Article and Find Full Text PDF

To encapsulate soluble iron, liposomes were prepared using unsaturated phospholipids (phosphatidylcholine from egg yolk), leading to high encapsulation efficiencies (82-99%). The iron concentration affected their oxidative stability: at 0.2 and 1 mM ferrous sulfate, the liposomes were stable, whereas at higher concentrations (10 and 48 mM), phospholipid oxidation was considerably higher.

View Article and Find Full Text PDF

Adsorbed to a variety of particles, iron may be carried to the lungs by inhalation thereby contributing to a number of inflammatory lung disorders. Redox-active iron is a potent catalyst of oxidative processes, but intracellularly it is bound primarily to ferritin in a non-reactive form and probably is catalytically active largely within the lysosomal compartment. Damage to the membranes of these organelles causes the release to the cytosol of a host of powerful hydrolytic enzymes, inducing apoptotic or necrotic cell death.

View Article and Find Full Text PDF

The elimination of toxic metal ions metabolically accumulated by patients remains a difficult clinical problem and a target of drug development. DTPA (diethylenetriaminepentaacetic acid) is a hydrophilic chelating agent with high affinity for divalent and trivalent metal ions including iron but with a limited ability to cross cell membranes for access to iron stores. In this study we have synthesized an amphiphilic form of this chelator-DTPA covalently linked to the phospholipid phosphatidylethanolamine (PE)--to produce a chelator that incorporates completely and stably into liposome membranes for efficient delivery to the liver and reticuloendothelial system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!