Identification and Structural Aspects of G-Quadruplex-Forming Sequences from the Influenza A Virus Genome.

Int J Mol Sci

Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Published: June 2021

Influenza A virus (IAV) causes seasonal epidemics and sporadic pandemics, therefore is an important research subject for scientists around the world. Despite the high variability of its genome, the structure of viral RNA (vRNA) possesses features that remain constant between strains and are biologically important for virus replication. Therefore, conserved structural motifs of vRNA can represent a novel therapeutic target. Here, we focused on the presence of G-rich sequences within the influenza A/California/07/2009(H1N1) genome and their ability to form RNA G-quadruplex structures (G4s). We identified 12 potential quadruplex-forming sequences (PQS) and determined their conservation among the IAV strains using bioinformatics tools. Then we examined the propensity of PQS to fold into G4s by various biophysical methods. Our results revealed that six PQS oligomers could form RNA G-quadruplexes. However, three of them were confirmed to adopt G4 structures by all utilized methods. Moreover, we showed that these PQS motifs are present within segments encoding polymerase complex proteins indicating their possible role in the virus biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199785PMC
http://dx.doi.org/10.3390/ijms22116031DOI Listing

Publication Analysis

Top Keywords

sequences influenza
8
influenza virus
8
form rna
8
identification structural
4
structural aspects
4
aspects g-quadruplex-forming
4
g-quadruplex-forming sequences
4
virus
4
virus genome
4
genome influenza
4

Similar Publications

Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.

View Article and Find Full Text PDF

Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020.

Virus Evol

December 2024

ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.

Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.

View Article and Find Full Text PDF

SARS-CoV-2 CoCoPUTs: analyzing GISAID and NCBI data to obtain codon statistics, mutations, and free energy over a multiyear period.

Virus Evol

January 2025

Hemostasis Branch 1, Division of Hemostasis, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA.

A consistent area of interest since the beginning of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been the sequence composition of the virus and how it has changed over time. Many resources have been developed for the storage and analysis of SARS-CoV-2 data, such as GISAID (Global Initiative on Sharing All Influenza Data), NCBI, Nextstrain, and outbreak.info.

View Article and Find Full Text PDF

A risk assessment framework was developed to evaluate the zoonotic potential of avian influenza (AI), focusing on virus mutations linked to phenotypic traits related to mammalian adaptation identified in the literature. Virus sequences were screened for the presence of these mutations and their geographical, temporal and subtype-specific trends. Spillover events to mammals (including humans) and human seroprevalence studies were also reviewed.

View Article and Find Full Text PDF

When investigating and controlling outbreaks caused by zoonotic avian influenza viruses (AIV), a One Health approach is key. However, knowledge-sharing on AIV-specific One Health strategies, tools and action plans remains limited across the EU/EEA. It is crucial to establish responsibilities, capacity requirements, and collaboration mechanisms during 'peace time' to enable timely and effective outbreak investigations and management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!