Potential Uses of Musaceae Wastes: Case of Application in the Development of Bio-Based Composites.

Polymers (Basel)

Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 #. No. 130, Col. Chuburná de Hidalgo, Mérida, Yucatán 97205, Mexico.

Published: June 2021

AI Article Synopsis

  • The Musaceae family, which includes bananas and plantains, offers valuable lignocellulosic fibers and starch that can be repurposed from traditionally wasted parts of the plant.
  • These materials can create bio-based composites, which could serve as eco-friendly alternatives to petroleum-based plastics in industries like packaging and automotive.
  • The study reviews how these fibers and starch from Musaceae are being utilized in various composite applications, focusing on their properties, processing methods, and potential uses.

Article Abstract

The Musaceae family has significant potential as a source of lignocellulosic fibres and starch from the plant's bunches and pseudostems. These materials, which have traditionally been considered waste, can be used to produce fully bio-based composites to replace petroleum-derived synthetic plastics in some sectors such as packaging, the automotive industry, and implants. The fibres extracted from Musaceae have mechanical, thermal, and physicochemical properties that allow them to compete with other natural fibres such as sisal, henequen, fique, and jute, among others, which are currently used in the preparation of bio-based composites. Despite the potential use of Musaceae residues, there are currently not many records related to bio-based composites' developments using starches, flours, and lignocellulosic fibres from banana and plantain pseudostems. In this sense, the present study focusses on the description of the Musaceae components and the review of experimental reports where both lignocellulosic fibre from banana pseudostem and flour and starch are used with different biodegradable and non-biodegradable matrices, specifying the types of surface modification, the processing techniques used, and the applications achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8199577PMC
http://dx.doi.org/10.3390/polym13111844DOI Listing

Publication Analysis

Top Keywords

bio-based composites
12
potential musaceae
8
lignocellulosic fibres
8
musaceae wastes
4
wastes case
4
case application
4
application development
4
bio-based
4
development bio-based
4
musaceae
4

Similar Publications

This paper experimentally investigates the impact response of composite laminates made with conventional and bio-based epoxy resin. Drop tower impact tests were conducted at varying energy levels, including repeated low-energy impacts, to evaluate perforation resistance. The laminates' residual strength and damage tolerance were assessed using the Damage Index (DI) and by analysing the resonance frequency variations through the Impulse Excitation Technique (IET).

View Article and Find Full Text PDF

The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented.

View Article and Find Full Text PDF

Flammability and smoke generation of glass-fiber-reinforced polyester laminates (GFRPs) modified with L-arginine phosphate (ArgPA) have been investigated. The composition, structure, and thermal degradation processes of ArgPA were assessed by the elemental, FTIR, and thermogravimetric analyses. Flammability and smoke emission of GFRPs varying by different amounts (5-15 wt.

View Article and Find Full Text PDF

Polybenzoxazines (PBzs), a class of high-performance thermosetting polymers, have gained significant attention for their exceptional thermal stability, mechanical properties, and chemical resistance, making them ideal for aerospace, electronics, and biomedical applications. Recent advancements emphasize their antimicrobial potential, attributed to unique structural properties and the ability to incorporate bio-active functional groups. This review highlights the synthesis, antimicrobial mechanisms, and applications of PBzs and their bio-based derivatives, focusing on sustainable materials science.

View Article and Find Full Text PDF

The escalating global climate crisis and energy challenges have made the development of efficient radiative cooling materials increasingly urgent. This study presents a machine-learning-based model for predicting the performance of radiative cooling aerogels (RCAs). The model integrated multiple parameters, including the material composition (matrix material type and proportions), modification design (modifier type and content), optical properties (solar reflectance and infrared emissivity), and environmental factors (solar irradiance and ambient temperature) to achieve accurate cooling performance predictions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!