One third of fatal car accidents and so many tragedies are due to alcohol abuse. These sad numbers could be mitigated if everyone had access to a breathalyzer anytime and anywhere. Having a breathalyzer built into a phone or wearable technology could be the way to get around reluctance to carry a separate device. With this goal, we propose an inexpensive breathalyzer that could be integrated in the screens of mobile devices. Our technology is based on the evaporation rate of the fog produced by the breath on the phone screen, which increases with increasing breath alcohol content. The device simply uses a photodiode placed on the side of the screen to measure the signature of the scattered light intensity from the phone display that is guided through the stress layer of the Gorilla glass screen. A part of the display light is coupled to the stress layer via the evanescent field induced at the edge of the breath microdroplets. We demonstrate that the intensity signature measured at the detector can be linked to blood alcohol content. We fabricated a prototype in a smartphone case powered by the phone's battery, controlled by an application installed on the smartphone, and tested it in real-world environments. Limitations and future work toward a fully operational device are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231870 | PMC |
http://dx.doi.org/10.3390/s21124076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!