High Step-Up Converter Based on Non-Series Energy Transfer Structure for Renewable Power Applications.

Micromachines (Basel)

Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José No. 2055, San Luis Potosí 78216, Mexico.

Published: June 2021

In this paper, a high step-up boost converter with a non-isolated configuration is proposed. This configuration has a quadratic voltage gain, suitable for processing energy from alternative sources. It consists of two boost converters, including a transfer capacitor connected in a non-series power transfer structure between input and output. High power efficiencies are achieved with this arrangement. Additionally, the converter has a common ground and non-pulsating input current. Design conditions and power efficiency analysis are developed. Bilinear and linear models are derived for control purposes. Experimental verification with a laboratory prototype of 500 W is provided. The proposed configuration and similar quadratic configurations are compared experimentally using the same number of components to demonstrate the power efficiency improvement. The resulting power efficiency of the prototype was above 95% at nominal load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232018PMC
http://dx.doi.org/10.3390/mi12060689DOI Listing

Publication Analysis

Top Keywords

power efficiency
12
high step-up
8
transfer structure
8
proposed configuration
8
configuration quadratic
8
power
6
step-up converter
4
converter based
4
based non-series
4
non-series energy
4

Similar Publications

Convergence of nanotechnology and artificial intelligence in the fight against liver cancer: a comprehensive review.

Discov Oncol

January 2025

Department of Pharmaceutics, Datta Meghe College of Pharmacy, Datta Meghe Institute of Higher Education and Research (DU), Sawangi Meghe, Wardha, Maharashtra, 442001, India.

Liver cancer is one of the most challenging malignancies, often associated with poor prognosis and limited treatment options. Recent advancements in nanotechnology and artificial intelligence (AI) have opened new frontiers in the fight against this disease. Nanotechnology enables precise, targeted drug delivery, enhancing the efficacy of therapeutics while minimizing off-target effects.

View Article and Find Full Text PDF

Self-powered Wraparound (Abaxial) Droplet Deposition via a Superhydrophobic Surface Aid.

J Agric Food Chem

January 2025

CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Future Technology College, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China.

Many diseases and pests are fond of the backs of leaves, making wraparound deposition essential for enhancing agrochemical utilization and minimizing environmental hazards. We present a superhydrophobic surface decorated with fluorinated-SiO nanoparticles on the adaxial (front) side, improving sprayed droplet wraparound behaviors and achieving a 10-fold increase in abaxial (backside) deposition without using an electrostatic sprayer. Solid-liquid contact electrification boosts the positive charge-to-mass ratio of rebound spraying from 17 to 454 nC g, with the abaxial surface acquiring opposite electric charges at kilovolt-level voltages.

View Article and Find Full Text PDF

Nanosecond pulse power has many driving advantages in the dielectric barrier discharge (DBD) application field, including better discharge effect, higher discharge efficiency, and lower electrode temperature. A high-voltage pulse voltage power supply (HV-PVPS) with a multi-turn ratio linear pulse transformer (PT) based on Marx circuit and PT topologies are suitable for most DBD plasma applications with fewer expansion modules, lower cost, smaller volume, and higher reliability comparing with the all-solid-state Marx nanosecond pulse power supply. However, during the process of DBD driven by an HV-PVPS based on Marx and PT topologies, the PT is prone to magnetic core saturation, which limits the application for DBD.

View Article and Find Full Text PDF

During batch fermentation, a variety of compounds are synthesized, as microorganisms undergo distinct growth phases: lag, exponential, growth-no-growth transition, stationary, and decay. A detailed understanding of the metabolic pathways involved in these phases is crucial for optimizing the production of target compounds. Dynamic flux balance analysis (dFBA) offers insight into the dynamics of metabolic pathways.

View Article and Find Full Text PDF

The next generation of soft electronics will expand to the third dimension. This will require the integration of mechanically compliant 3D functional structures with stretchable materials. Here, omnidirectional direct ink writing (DIW) of poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) aerogels with tunable electrical and mechanical performance is demonstrated, which can be integrated with soft substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!