Clear cell renal cell carcinoma (ccRCC) is the most common histological subtype of renal cell carcinoma (RCC). It is characterized by a high cell proliferation and the ability to store lipids. Previous studies have demonstrated the overexpression of enzymes associated with lipid metabolism, including stearoyl-CoA desaturase-1 (SCD-1), which increases the concentration of unsaturated fatty acids in tumor cells. In this work, we studied the expression of SCD-1 in primary ccRCC tumors, as well as in cell lines, to determine its influence on the tumor lipid composition and its role in cell proliferation. The lipidomic analyses of patient tumors showed that oleic acid (18:1-9) is one of the major fatty acids, and it is particularly abundant in the neutral lipid fraction of the tumor core. Using a ccRCC cell line model and in vitro-generated chemical hypoxia, we show that SCD-1 is highly upregulated (up to 200-fold), and this causes an increase in the cellular level of 18:1-9, which, in turn, accumulates in the neutral lipid fraction. The pharmacological inhibition of SCD-1 blocks 18:1-9 synthesis and compromises the proliferation. The addition of exogenous 18:1-9 to the cells reverses the effects of SCD-1 inhibition on cell proliferation. These data reinforce the role of SCD-1 as a possible therapeutic target.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8231571 | PMC |
http://dx.doi.org/10.3390/cancers13122962 | DOI Listing |
Curr Cardiol Rev
January 2025
Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, 342005, India.
Cardiovascular-kidney-metabolic (CKM) syndrome is the association between obesity, diabetes, CKD (chronic kidney disease), and cardiovascular disease. GDF-15 mainly acts through the GFRAL (Glial cell line-derived neurotrophic factor Family Receptor Alpha-Like) receptor. GDF-15 and GDFRAL complex act mainly through RET co-receptors, further activating Ras and phosphatidylinositol-3-kinase (PI3K)/Akt pathways through downstream signaling.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
Background: Hyperuricemia (HUA) is a condition characterized by excessive uric acid production and/or inadequate uric acid excretion due to abnormal purine metabolism in the human body. Uric acid deposits resulting from HUA can lead to complications such as renal damage. Currently, drugs used to treat HUA lack specificity and often come with specific toxic side effects.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan.
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel.
Carcinogenesis often involves significant alterations in the cancer genome, marked by large structural variants (SVs) and copy number variations (CNVs) that are difficult to capture with short-read sequencing. Traditionally, cytogenetic techniques are applied to detect such aberrations, but they are limited in resolution and do not cover features smaller than several hundred kilobases. Optical genome mapping (OGM) and nanopore sequencing [Oxford Nanopore Technologies (ONT)] bridge this resolution gap and offer enhanced performance for cytogenetic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!