This paper examines the effectiveness of neural network algorithms for hydraulic system fault detection and a novel neural network architecture is suggested. The proposed gated convolutional autoencoder was trained on a simulated training set augmented with just 0.2% data from the real test bench, dramatically reducing the time needed to spend with the actual hardware to build a high-quality fault detection model. Our fault detection model was validated on a test bench and showed accuracy of more than 99% of correctly recognized hydraulic system states with a 10-s sampling window. This model can be also leveraged to examine the decision boundaries of the classifier in the two-dimensional embedding space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272240PMC
http://dx.doi.org/10.3390/s21134410DOI Listing

Publication Analysis

Top Keywords

fault detection
12
gated convolutional
8
convolutional autoencoder
8
neural network
8
hydraulic system
8
test bench
8
detection model
8
improved fault
4
fault diagnosis
4
diagnosis hydraulic
4

Similar Publications

The perception of the vehicle's environment is crucial for automated vehicles. Therefore, environmental sensors' reliability and correct functioning are becoming increasingly important. Current vehicle inspections and self-diagnostics must be adapted to ensure the correct functioning of environmental sensors throughout the vehicle's lifetime.

View Article and Find Full Text PDF

Knowledge Graph-Based In-Context Learning for Advanced Fault Diagnosis in Sensor Networks.

Sensors (Basel)

December 2024

Department of Mathematics and Information Technology, The Education University of Hong Kong, Hong Kong SAR, China.

This paper introduces a novel approach for enhancing fault diagnosis in industrial equipment systems through the application of sensor network-driven knowledge graph-based in-context learning (KG-ICL). By focusing on the critical role of sensor data in detecting and isolating faults, we construct a domain-specific knowledge graph (DSKG) that encapsulates expert knowledge relevant to industrial equipment. Utilizing a long-length entity similarity (LES) measure, we retrieve relevant information from the DSKG.

View Article and Find Full Text PDF

LLC resonant converters have emerged as essential components in DC charging station modules, thanks to their outstanding performance attributes such as high power density, efficiency, and compact size. The stability of these converters is crucial for vehicle endurance and passenger experience, making reliability a top priority. However, malfunctions in the switching transistor or current sensor can hinder the converter's ability to maintain a resonant state and stable output voltage, leading to a notable reduction in system efficiency and output capability.

View Article and Find Full Text PDF

Applying deep learning to unsupervised bearing fault diagnosis in complex industrial environments is challenging. Traditional fault detection methods rely on labeled data, which is costly and labor-intensive to obtain. This paper proposes a novel unsupervised approach, WDCAE-LKA, combining a wide kernel convolutional autoencoder (WDCAE) with a large kernel attention (LKA) mechanism to improve fault detection under unlabeled conditions, and the adaptive threshold module based on a multi-layer perceptron (MLP) dynamically adjusts thresholds, boosting model robustness in imbalanced scenarios.

View Article and Find Full Text PDF

XAI GNSS-A Comprehensive Study on Signal Quality Assessment of GNSS Disruptions Using Explainable AI Technique.

Sensors (Basel)

December 2024

LASSENA-Laboratory of Space Technologies, Embedded Systems, Navigation and Avionics, École de Technologie Supérieure (ETS), Montreal, QC H3C-1K3, Canada.

The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-processing the signal under these circumstances before feeding the signal into the GNSS receiver's post-processing stage. The identification of the time domain statistical attributes and the spectral domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under various kinds of jamming attacks, spoofing attacks, and multipath scenarios.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!