is a magnificent and long-lived woody plant that has traditionally been used to treat various diseases including inflammatory, neurological, cancer, and cardiovascular diseases. In the present study, we demonstrated the biological mechanisms of paeonoside (PASI) isolated from the dried roots of in pre-osteoblasts. Herein, we found that PASI has no cytotoxic effects on pre-osteoblasts. Migration assay showed that PASI promoted wound healing and transmigration in osteoblast differentiation. PASI increased early osteoblast differentiation and mineralized nodule formation. In addition, PASI enhanced the expression of Wnt3a and bone morphogenetic protein 2 (BMP2) and activated their downstream molecules, Smad1/5/8 and β-catenin, leading to increases in runt-related transcription factor 2 (RUNX2) expression during osteoblast differentiation. Furthermore, PASI-mediated osteoblast differentiation was attenuated by inhibiting the BMP2 and Wnt3a pathways, which was accompanied by reduction in the expression of RUNX2 in the nucleus. Taken together, our findings provide evidence that PASI enhances osteoblast differentiation and mineralized nodules by regulating RUNX2 expression through the BMP2 and Wnt3a pathways, suggesting a potential role for PASI targeting osteoblasts to treat bone diseases including osteoporosis and periodontitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8268717 | PMC |
http://dx.doi.org/10.3390/ijms22136899 | DOI Listing |
J Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFJ Adv Prosthodont
December 2024
Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
Purpose: This pilot study investigated the effect of surface roughness on osseointegration by comparing two types of commercial SLA-treated dental implants with different surface roughness levels: moderately rough (S = 1 - 2 µm) and rough surfaces (S > 2 µm).
Materials And Methods: Two implant groups were studied: TS (rough surface) and ADD (moderately rough surface) groups. Surface characteristics were analyzed using optical profilometry and SEM.
Int J Nanomedicine
January 2025
Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece.
Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).
Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.
J Cell Sci
January 2025
Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.
View Article and Find Full Text PDFAnim Genet
February 2025
Department of Clinical Sciences and Services, Centre for Vaccinology and Regenerative Medicine, The Royal Veterinary College, Hatfield, Herts, UK.
Bone fractures are a significant problem in Thoroughbred racehorses. The risk of fracture is influenced by both genetic and environmental factors. To determine the biological processes that are affected in genetically susceptible horses, we utilised polygenic risk scoring to establish induced pluripotent stem cells (iPSCs) from horses at high and low genetic risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!