There is currently no objective portable screening modality for narrow angles in the community. In this prospective, single-centre image validation study, we used machine learning on slit lamp images taken with a portable smartphone device (MIDAS) to predict the central anterior chamber depth (ACD) of phakic patients with undilated pupils. Patients 60 years or older with no history of laser or intraocular surgery were recruited. Slit lamp images were taken with MIDAS, followed by anterior segment optical coherence tomography (ASOCT; Casia SS-1000, Tomey, Nagoya, Japan). After manual annotation of the anatomical landmarks of the slit lamp photos, machine learning was applied after image processing and feature extraction to predict the ACD. These values were then compared with those acquired from the ASOCT. Sixty-six eyes (right = 39, 59.1%) were included for analysis. The predicted ACD values formed a strong positive correlation with the measured ACD values from ASOCT (R = 0.91 for training data and R = 0.73 for test data). This study suggests the possibility of estimating central ACD using slit lamp images taken from portable devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8227501 | PMC |
http://dx.doi.org/10.3390/bios11060182 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!