Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional (2D) van der Waals heterojunctions have many unique properties, and energy band modulation is central to applying these properties to electronic devices. Taking the 2D graphene/MoSheterojunction as a model system, we demonstrate that the band structure can be finely tuned by changing the graphene structure of the 2D heterojunction via ultraviolet/ozone (UV/O). With increasing UV/Oexposure time, graphene in the heterojunction has more defect structures. The varied defect levels in graphene modulate the interfacial charge transfer, accordingly the band structure of the heterojunction. And the corresponding performance change of the graphene/MoSfield effect transistor indicates the shift of the Schottky barrier height after UV/Otreatment. The result further proves the effective band structure modulation of the graphene/MoSheterojunction by UV/O. This work will be beneficial to both fundamental research and practical applications of 2D van der Waals heterojunction in electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ac1095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!