Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ballistocardiography (BCG) is an unobtrusive approach for cost-effective and patient-friendly health monitoring. In this work, deep learning methods are used for heart rate estimation from BCG signals and are compared against five digital signal processing methods found in literature.The models are evaluated on a dataset featuring BCG recordings from 42 patients, acquired with a pneumatic system. Several different deep learning architectures, including convolutional, recurrent and a combination of both are investigated. Besides model performance, we are also concerned about model size and specifically investigate less complex and smaller networks.Deep learning models outperform traditional methods by a large margin. Across 14 patients in a held-out testing set, an architecture with stacked convolutional and recurrent layers achieves an average mean absolute error (MAE) of 2.07 beat min, whereas the best-performing traditional method reaches 4.24 beat min. Besides smaller errors, deep learning models show more consistent performance across different patients, indicating the ability to better deal with inter-patient variability, a prevalent issue in BCG analysis. In addition, we develop a smaller version of the best-performing architecture, that only features 8283 parameters, yet still achieves an average MAE of 2.32 beat minon the testing set.This is the first study that applies and compares different deep learning architectures to heart rate estimation from bed-based BCG signals. Compared to signal processing algorithms, deep learning models show dramatically smaller errors and more consistent results across different individuals. The results show that using smaller models instead of excessively large ones can lead to sufficient performance for specific biosignal processing applications. Additionally, we investigate the use of fully convolutional networks for 1D signal processing, which is rarely applied in literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6579/ac10aa | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!