A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heart rate estimation from ballistocardiographic signals using deep learning. | LitMetric

Heart rate estimation from ballistocardiographic signals using deep learning.

Physiol Meas

Institute for Biomedical Image Analysis, UMIT-Private University for Health Sciences, Medical Informatics and Technology, A-6060 Hall in Tirol, Austria.

Published: July 2021

Ballistocardiography (BCG) is an unobtrusive approach for cost-effective and patient-friendly health monitoring. In this work, deep learning methods are used for heart rate estimation from BCG signals and are compared against five digital signal processing methods found in literature.The models are evaluated on a dataset featuring BCG recordings from 42 patients, acquired with a pneumatic system. Several different deep learning architectures, including convolutional, recurrent and a combination of both are investigated. Besides model performance, we are also concerned about model size and specifically investigate less complex and smaller networks.Deep learning models outperform traditional methods by a large margin. Across 14 patients in a held-out testing set, an architecture with stacked convolutional and recurrent layers achieves an average mean absolute error (MAE) of 2.07 beat min, whereas the best-performing traditional method reaches 4.24 beat min. Besides smaller errors, deep learning models show more consistent performance across different patients, indicating the ability to better deal with inter-patient variability, a prevalent issue in BCG analysis. In addition, we develop a smaller version of the best-performing architecture, that only features 8283 parameters, yet still achieves an average MAE of 2.32 beat minon the testing set.This is the first study that applies and compares different deep learning architectures to heart rate estimation from bed-based BCG signals. Compared to signal processing algorithms, deep learning models show dramatically smaller errors and more consistent results across different individuals. The results show that using smaller models instead of excessively large ones can lead to sufficient performance for specific biosignal processing applications. Additionally, we investigate the use of fully convolutional networks for 1D signal processing, which is rarely applied in literature.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ac10aaDOI Listing

Publication Analysis

Top Keywords

deep learning
24
heart rate
12
rate estimation
12
signal processing
12
learning models
12
bcg signals
8
signals compared
8
learning architectures
8
convolutional recurrent
8
achieves average
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!