Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Air pollution is at the center of pollution-control discussion due to the significant adverse health effects on individuals and the environment. Research has shown the association between unsafe environments and different sizes of particulate matter (PM), highlighting the importance of pollutant monitoring to mitigate its detrimental effect. By monitoring air quality with low-cost monitoring devices that collect massive observations, such as Air Box, a comprehensive collection of ground-level PM concentration is plausible due to the simplicity and low-cost, propelling applications in agriculture, aquaculture, and air quality, water resources, and disaster prevention. This paper aims to view IoT-based systems with low-cost microsensors at the sensor, network, and application levels, along with machine learning algorithms that improve sensor networks' precision, providing better resolution. From the analysis at the three levels, we analyze current PM monitoring methods, including the use of sensors when collecting PM concentrations, demonstrate the use of IoT-based systems in PM monitoring and its challenges, and finally present the integration of AI and IoT (AIoT) in PM monitoring, indoor air quality control, and future directions. In addition, the inclusion of Taiwan as a site analysis was illustrated to show an example of AIoT in PM-control policy-making potential directions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126442 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!