Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We extracted and analyzed microplastics (MP) in archived sediment cores from Great Bay Estuary (GBE) in the Gulf of Maine region of North America. Results indicated that MP are distributed in GBE sediments, 0-30 cm, at an average occurrence of 116 ± 21 particles g and that morphology varies by site and depth. Analysis by sediment depth and age class indicated that MP accumulation increased over several decades but recently (5-10 years) has likely begun to decrease. Hydrodynamic and particle transport modeling indicated that bed characteristics are a more controlling factor in MP distribution than typical MP properties and that the highest accumulation likely occurs in regions with weaker hydrodynamic flows and lower bed shear stress, e.g., eelgrass meadows and along fringes of the Bay. These results provide a baseline and predictive understanding of the occurrence, morphology, and sedimentation of MP in the estuary.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112653 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!