A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Schizophrenia and substance use disorder: Characteristics of coexisting issues in a forensic setting. | LitMetric

Schizophrenia and substance use disorder: Characteristics of coexisting issues in a forensic setting.

Drug Alcohol Depend

Department of Forensic Psychiatry, Psychiatric Hospital, University of Zurich, Zurich, Switzerland. Electronic address:

Published: September 2021

Background And Aims: Recent research has identified higher prevalence of offending behavior in patients with comorbid schizophrenia spectrum disorder (SSD) and substance use disorder (SUD) compared to patients with SSD only and to the general population. However, findings on the subgroup of patients with SUD, SSD and offending behavior in forensic psychiatric care are scarce and inconsistent. The present study used machine learning to uncover more detailed characteristics of offender patients in forensic psychiatric care with comorbid SSD and SUD.

Methods: Using machine learning algorithms, 370 offender patients (91.6 % male, mean age of M = 34.1, SD = 10.2) and 558 variables were explored in order to build three models to differentiate between no substance use disorder, cannabis use disorder and any other substance use disorder. To counteract the risk of overfitting, the dataset was split, employing variable filtering, machine learning model building and selection embedded in a nested resampling approach on one subset. The best model was then selected and validated on the second data subset.

Results: Distinguishing between SUD vs. no drug use disorder yielded models with an AUC of 70 and 78. Variables assignable to demographics, social disintegration, antisocial behavior and illness were identified as most influential for the distinction. The model comparing cannabis use disorder with other substance use disorders provided no significant differences.

Conclusions: From a clinical perspective, offender patients suffering from schizophrenia spectrum and comorbid substance use disorder seem particularly challenging to treat, but initial differences in psychopathology will dissipate over inpatient treatment. Our data suggest that offender patients may benefit from appropriate treatment that focuses on illicit drug abuse to reduce criminal behavior and improve social integration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2021.108850DOI Listing

Publication Analysis

Top Keywords

substance disorder
20
offender patients
16
machine learning
12
disorder
9
offending behavior
8
schizophrenia spectrum
8
forensic psychiatric
8
psychiatric care
8
cannabis disorder
8
disorder substance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!