In the preparation of an Al-Ti-C grain refiner under an ultrasonic field, the mechanism of the wetting behaviour between Al and C was systematically investigated. The results demonstrated that the wetting behaviour was mainly dependent on the wetting of the Al melt on graphite under the ultrasonic field (physical wetting) and the formation and mass transfer of TiC (reactive wetting). The diffusion of Ti atoms and their adsorption around the graphite could contribute to the wetting of Al-C. TiC particles were formed under the high temperature caused by the cavitation effect, and they detached from the interface due to the sound pressure, which resulted in consistently sufficient contact on the wetting interface. Moreover, the wetting and spreading behaviour of the Al melt on graphite under an ultrasonic field were numerically simulated, strongly manifesting that the ultrasonic field could facilitate the wetting of the Al-C interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8254042 | PMC |
http://dx.doi.org/10.1016/j.ultsonch.2021.105633 | DOI Listing |
Ultrason Sonochem
January 2025
Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA. Electronic address:
Ultrasound technology has been increasingly explored as an eco-friendly method to improve the microbial safety of leafy greens. However, its effect on produce quality is critical, and considerable knowledge gaps remain in this area. The present study examined the response of leafy greens to ultrasound treatment as shown by tissue damage and sensory quality, using a novel multifrequency, multimode, modulated (MMM) system to address the issue of nonuniform ultrasound field distribution.
View Article and Find Full Text PDFJ Hand Surg Am
January 2025
From Rehabilitation Research and Development, Palo Alto Veterans Administration Medical Center and the Schools of Medicine and Engineering, Stanford University, Stanford, Calif.
A biologically safe, noninvasive method for visualizing bone and soft tissue relationships has been developed recently. Termed the ultrasonic transmission imaging system, its advantages include visualization of soft tissues in real time while motion is underway. The image can be correlated to standard x-ray films, but since no ionizing radiation is involved, repeated risk-free visualization of extremities for either diagnostic assessment or biomechanical studies is permitted.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R&D Center of Micro-Nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
Sound signals not only serve as the primary communication medium but also find application in fields such as medical diagnosis and fault detection. With public healthcare resources increasingly under pressure, and challenges faced by disabled individuals on a daily basis, solutions that facilitate low-cost private healthcare hold considerable promise. Acoustic methods have been widely studied because of their lower technical complexity compared to other medical solutions, as well as the high safety threshold of the human body to acoustic energy.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
Traditional drying is a highly energy-intensive process, accounting for approximately 15% of total manufacturing cost, it often resulting in reduced product quality due to low drying efficiency. Biological and chemical agents, referred to as biochemical drying improvers, are employed as pretreatments to enhance both drying characteristics and quality attributes of fruits and vegetables. This article provides a thorough examination of various biochemical drying improvers (including enzymes, microorganisms, edible film coatings, ethanol, organic acids, hyperosmotic solutions, ethyl oleate alkaline solutions, sulfites, cold plasma, carbon dioxide, ozone, inorganic alkaline agents, and inorganic salts) and their effects on improving the drying processes of fruits and vegetables.
View Article and Find Full Text PDFFront Hum Neurosci
December 2024
Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!