Vapor exposure to Δ9-tetrahydrocannabinol (THC) slows locomotion of the Maine lobster (Homarus americanus).

Pharmacol Biochem Behav

Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Neuroscience, The Scripps Research Institute; La Jolla, CA, USA. Electronic address:

Published: August 2021

Rationale: Despite a long history of use in synaptic physiology, the lobster has been a neglected model for behavioral pharmacology. A restaurateur proposed that exposing lobster to cannabis smoke reduces anxiety and pain during the cooking process. It is unknown if lobster gill respiration in air would result in significant Δ-tetrahydrocannabinol (THC) uptake and whether this would have any detectable behavioral effects.

Objective: The primary goal was to determine tissue THC levels in the lobster after exposure to THC vapor. Secondary goals were to determine if THC vapor altered locomotor behavior or nociception.

Methods: Tissue samples were collected (including muscle, brain and hemolymph) from Homarus americanus (N = 3 per group) following 30 or 60 min of exposure to vapor generated by an e-cigarette device using THC (100 mg/mL in a propylene glycol vehicle). Separate experiments assessed locomotor behavior and hot water nociceptive responses following THC vapor exposure.

Results: THC vapor produced duration-related THC levels in all tissues examined. Locomotor activity was decreased (distance, speed, time-mobile) by 30 min inhalation of THC. Lobsters exhibit a temperature-dependent withdrawal response to immersion of tail, antennae or claws in warm water; this is novel evidence of thermal nociception for this species. THC exposure for 60 min had only marginal effect on nociception under the conditions assessed.

Conclusions: Vapor exposure of lobsters, using an e-cigarette based model, produces dose-dependent THC levels in all tissues and reduces locomotor activity. Hot water nociception was temperature dependent, but only minimal anti-nociceptive effect of THC exposure was confirmed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9083469PMC
http://dx.doi.org/10.1016/j.pbb.2021.173222DOI Listing

Publication Analysis

Top Keywords

thc vapor
16
thc
13
thc levels
12
vapor exposure
8
homarus americanus
8
locomotor behavior
8
hot water
8
levels tissues
8
locomotor activity
8
thc exposure
8

Similar Publications

The legalization of cannabis in several states across the US has increased the need to better understand its effects on the body, brain, and behavior, particularly in different populations. Rodent models are particularly valuable in this respect because they provide precise control over external variables. Previous rodent studies have found age and sex differences in response to injected Δ-tetrahydrocannabinol (THC), the major psychoactive component of cannabis.

View Article and Find Full Text PDF

Acute and chronic cannabis vapor exposure influences basal and stress-induced release of glucocorticoids in male and female rats.

Psychoneuroendocrinology

December 2024

Hotchkiss Brain Institute, Mathison Centre for Mental Health Research and Education, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Department of Cell Biology and Anatomy & Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. Electronic address:

Management of stress and anxiety is often listed as the primary motivation behind cannabis use. Human research has found that chronic cannabis use is associated with increased basal cortisol levels but blunted neuroendocrine responses to stress. Preclinical research has demonstrated mixed effects of Δ-tetrahydrocannabinol (THC; the psychoactive constituent of cannabis), much of which is suggestive of dose-dependent effects; however, the predominance of this work has employed an injection method to deliver cannabis.

View Article and Find Full Text PDF

The increasing acceptance of cannabis use, and policy changes in several jurisdictions has led researchers and public health experts to call for a standard cannabis dose. Standard dosing units are useful tools for regulation, substance use guidelines, data collection, consistency of research, as a means of communicating low-risk recommendations and dose-related effects, and for self-monitoring. Efforts to standardize cannabis dose have focused on cannabinoid content without considering tolerance or mode.

View Article and Find Full Text PDF

Fatty acid binding protein 7 plays an important modulatory sex-dependent role on brain endocannabinoid levels and THC metabolism.

PLoS One

December 2024

Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, United States of America.

Article Synopsis
  • FABP7 is a protein found in the brain that may help transport cannabinoids like THC, but its role in the endocannabinoid system is not fully understood.
  • In a study using mice lacking FABP7, researchers measured THC and its metabolite 11-OH-THC levels after THC inhalation, finding that females with FABP7 deletion had lower levels of 11-OH-THC compared to those with the protein.
  • The study also revealed that FABP7 influences endocannabinoid levels, showing females with FABP7 deletion had decreased levels of anandamide and increased levels of 2-AG, indicating a sex-specific role in THC metabolism and endocannabinoid regulation.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the immediate cardiovascular effects of different cannabis inhalation methods and cannabinoid profiles, focusing on THC and CBD.
  • Researchers assessed arterial stiffness, endothelial function, and cardiac performance in 22 healthy cannabis users before and after using THC-dominant and CBD-dominant strains.
  • Results show that THC use significantly increases heart rate and blood pressure, while CBD does not affect these cardiovascular markers, indicating potential risks associated with THC consumption.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!