Background/aim: Effectiveness and safety of mouthguards are greatly affected by their thickness. The aim of this study was to clarify the influence of the frame shape of the forming device on how the model position on the forming table affects the anterior and posterior mouthguard thickness.
Materials And Methods: Mouthguards were thermoformed using 4.0-mm-thick ethylene-vinyl-acetate sheets and a vacuum forming device. Square sheets were fixed with the square frame of the forming device. Circular sheets were fixed to the forming device with a circular frame. The model was placed with its anterior rim positioned 40, 30, 20, or 10 mm from the front of the forming table. The model position was marked on the forming table so that it was constant under each condition. Six mouthguards were fabricated for each condition. Mouthguard thicknesses of the incisal edge, labial and buccal surfaces, and the cusp were measured. Differences in the rate of thickness reduction due to frame shapes and model positions were analyzed by two-way ANOVA.
Results: Difference in the thickness reduction rate depending on the frame shape was observed on the labial and buccal surfaces, and it was significantly greater with the circular frame than with the square frame (p < .01). In the anterior region, the thickness reduction rate tended to increase as the model position was moved toward the front of the forming table. The thickness reduction rate of the posterior portion was lowest when the model's molar was positioned at the center of the forming table.
Conclusions: The labial thickness of the mouthguard was not affected by the frame shape if the distance from the model to the frame was larger than the model height. However, the buccal thickness was thinner with the circular frame than with the square frame regardless of the model position.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/edt.12701 | DOI Listing |
Sci Rep
January 2025
Multifunctional Materials Laboratory, Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
The utilization of single crystals is exponentially growing in optoelectronic devices due to their exceptional benefits, including high phase purity and the absence of grain boundaries. However, achieving single crystals with a porous structure poses significant challenges. In this study, we present a method for fabricating porous single crystals (porous-SC) of CsAgBiBr and related halide double perovskites using an infrared-assisted spin coating technique.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory of Gas and Fire Control for Mines, Ministry of Education, Xuzhou, 221116, China.
Confined space fires could easily cause serious casualties and property damage, and foam is an effective means of preventing confined space fires. The existing foam generator does not have both momentum and foam expansion rate (FER) and is poorly suited to confined spaces. In order to develop a foam generator suitable for confined space fire protection, an in-depth analysis of the physical foaming characteristics of self-suction foam is required, and the structure of the foam generator is optimized accordingly.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.
Nanobubbles wield a significant influence over the electronic properties of 2D materials, showing diverse applications ranging from flexible devices to strain sensors. Here, we reveal that a strongly correlated phenomenon, i.e.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!