This paper presents regulation of an asynchronous induction motor so as to create a stable vacuum milk pump using Variable Frequency Drive (VFD). Contribution includes providing information about the usage of the VFD, which regulates the activity of an asynchronous induction motor so that the vacuum pump milking machine creates stable vacuum. The paper describes the functional and time dependence of input values and output parameters of frequency converters at changing electric motor speed. For simulation and verification the milking process a mathematical model of the milking machine was created. The simulation was verified in Matlab/Simulink software. The constructed mathematical model showed symmetric regulation. Control model symmetry was verified at the laboratory of milking machine. The possibility to remove the control valve from milking equipment was proven using the measured data. It was found that constant vacuum values can be maintained. A constant vacuum can be maintained by changing vacuum pump speed. This control is of an accepted standard (ISO 5707: 2007). The power saving control values (on the milking equipment) of the VFD were positive throughout the measuring range. The performance of the milking vacuum pump is normally designed from the maximum air consumption of the milking machine at nominal vacuum (50 kPa), and a performance reserve is added to this. This means that the pump is operated between the ranges 7.53 and 15.06 dm3 s-1. By using a vacuum pump controlled by a VFD, power savings can be achieved from 32.50% to 54.02% compared to a control valve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8248969 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0253427 | PLOS |
Sci Total Environ
December 2024
Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK; Faculty of Engineering, Manipal University, Jaipur, Rajasthan 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India. Electronic address:
This study examines the concentration, distribution, and characteristics of suspended microplastics (MPs) across various indoor environments in Malaysia, including offices, classrooms, landed homes, and apartments. Over a six-week period, MPs were collected using a vacuum pump and analyzed through gravimetric analysis, stereomicroscopy, and Raman spectroscopy. The results revealed significant variability in MPs concentrations among different locations, with fibers identified as the predominant morphological type.
View Article and Find Full Text PDFACS Nano
December 2024
School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Ultrafast thermal switches are pivotal for managing heat generated in advanced solid-state applications, including high-speed chiplets, thermo-optical modulators, and on-chip lasers. However, conventional phonon-based switches cannot meet the demand for picosecond-level response times, and existing near-field radiative thermal switches face challenges in efficiently modulating heat transfer across vacuum gaps. To overcome these limitations, we propose an ultrafast thermal switch design based on pump-driven transient polaritons in asymmetric terminals.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
Shaanxi Collaborative Innovation Center of Green Intelligent Printing and Packaging, Xi'an University of Technology, Xi'an 710054, China.
Rapid industrial development has led to increased crude oil extraction and oily wastewater discharge. Achieving oil-water separation and marine oil adsorption in a cost-effective, efficient, and environmentally friendly manner remains a global challenge. In this work, natural wood was chemically treated to prepare a degradable and environmentally friendly wood sponge structure.
View Article and Find Full Text PDFHeliyon
May 2024
Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan, Kashan, P.O. Box 87317-53153, Iran.
Dalton Trans
November 2024
Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-603203, Tamil Nadu, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!