POMAShiny: A user-friendly web-based workflow for metabolomics and proteomics data analysis.

PLoS Comput Biol

Statistics and Bioinformatics Research Group, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain.

Published: July 2021

AI Article Synopsis

  • Metabolomics and proteomics encounter challenges in data mining, particularly in statistical analysis, which is essential for biological interpretation and biomarker discovery.
  • To aid in these analyses, bioinformatic tools have been developed, but many still rely on limited statistical methods and inflexible data sets.
  • POMAShiny is a user-friendly web tool that enhances the statistical analysis and visualization of metabolomics and proteomics data, integrating various methods for improved reproducibility and flexibility, and is available for free online.

Article Abstract

Metabolomics and proteomics, like other omics domains, usually face a data mining challenge in providing an understandable output to advance in biomarker discovery and precision medicine. Often, statistical analysis is one of the most difficult challenges and it is critical in the subsequent biological interpretation of the results. Because of this, combined with the computational programming skills needed for this type of analysis, several bioinformatic tools aimed at simplifying metabolomics and proteomics data analysis have emerged. However, sometimes the analysis is still limited to a few hidebound statistical methods and to data sets with limited flexibility. POMAShiny is a web-based tool that provides a structured, flexible and user-friendly workflow for the visualization, exploration and statistical analysis of metabolomics and proteomics data. This tool integrates several statistical methods, some of them widely used in other types of omics, and it is based on the POMA R/Bioconductor package, which increases the reproducibility and flexibility of analyses outside the web environment. POMAShiny and POMA are both freely available at https://github.com/nutrimetabolomics/POMAShiny and https://github.com/nutrimetabolomics/POMA, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8279420PMC
http://dx.doi.org/10.1371/journal.pcbi.1009148DOI Listing

Publication Analysis

Top Keywords

metabolomics proteomics
16
proteomics data
12
data analysis
8
analysis metabolomics
8
statistical analysis
8
statistical methods
8
analysis
6
data
5
pomashiny user-friendly
4
user-friendly web-based
4

Similar Publications

Cardio-metabolic and cytoskeletal proteomic signatures differentiate stress hypersensitivity in dystrophin-deficient mdx mice.

J Proteomics

December 2024

School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand; Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia; Department of Medicine, University of Otago, Christchurch 8014, New Zealand; Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand. Electronic address:

Extreme heterogeneity exists in the hypersensitive stress response exhibited by the dystrophin-deficient mdx mouse model of Duchenne muscular dystrophy. Because stress hypersensitivity can impact dystrophic phenotypes, this research aimed to understand the peripheral pathways driving this inter-individual variability. Male and female mdx mice were phenotypically stratified into "stress-resistant" or "stress-sensitive" groups based on their response to two laboratory stressors.

View Article and Find Full Text PDF

Joint proteomic and metabolomic analysis reveals renal metabolic remodeling of chronic heart failure mice.

J Pharm Biomed Anal

December 2024

Institute of Traditional Chinese Medicine, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China; Key Laboratory of TCM Drug Delivery, Shaanxi Academy of Traditional Chinese Medicine, Xi'an, Shaanxi, China. Electronic address:

Pharmacologic intervention in chronic heart failure (HF) with renal insufficiency is one of the clinical challenges due to the fact that the mechanisms of cardio-renal interactions in chronic heart failure (CHF) progressing have not been fully revealed. In this paper, C57BL/6 mice were applied thoracic aortic narrowing surgery to establish pressure overload CHF model. Cardiac function, serum markers, renal pathologic changes and kidney metabolism were analyzed at 4th, 8th, 12th, and 16th week after surgery respectively to evaluate the heart-Kidney pathologic overlap.

View Article and Find Full Text PDF

Exploring the gut microbiota and metabolome of Lateolabrax japonicus: A multi-omics approach.

Comp Biochem Physiol Part D Genomics Proteomics

December 2024

Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, People's Republic of China. Electronic address:

The intestinal microbiota plays a crucial role in the health and development of fish, engaging in intricate interactions with the host organism. As a significant species in aquaculture, Lateolabrax japonicus serves as an exemplary model for investigating these interactions and their subsequent effects on growth and health. This study utilized a multi-omics approach, incorporating metagenomic sequencing and non-targeted metabolomics, to delineate the gut microbiota and metabolome of L.

View Article and Find Full Text PDF

Background: Canine adipose-derived mesenchymal stem cells (cAD-MSCs) demonstrate promising tissue repair and regeneration capabilities. However, the procurement and preservation of these cells or their secreted factors for therapeutic applications pose a risk of viral contamination, and the consequences for cAD-MSCs remain unexplored. Consequently, this research sought to assess the impact of canid alphaherpesvirus 1 (CHV) on the functional attributes of cAD-MSCs, including gene expression profiles and secretome composition.

View Article and Find Full Text PDF

Effects of moderate intensity exercise on liver metabolism in mice based on multi-omics analysis.

Sci Rep

December 2024

Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 2 Yabao Road, Chaoyang District, Beijing, 100020, China.

Physical exercise is beneficial to keep physical and mental health. The molecular mechanisms underlying exercise are still worth exploring. The healthy adult mice after six weeks of moderate-intensity exercise (experimental group) and sedentary mice (control group) were used to perform transcriptomic, proteomic, lactylation modification, and metabolomics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!