Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We report symmetry-breaking and restoring bifurcations of solitons in a fractional Schrödinger equation with cubic or cubic-quintic (CQ) nonlinearity and a parity-time-symmetric potential, which may be realized in optical cavities. Solitons are destabilized at the bifurcation point, and, in the case of CQ nonlinearity, the stability is restored by an inverse bifurcation. Two mutually conjugate branches of ghost states (GSs), with complex propagation constants, are created by the bifurcation, solely in the case of fractional diffraction. While GSs are not true solutions, direct simulations confirm that their shapes and results of their stability analysis provide a "blueprint" for the evolution of genuine localized modes in the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.428254 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!