This paper describes, to our knowledge, the first demonstration of high performance tilt locking, a method of stabilizing laser frequency to an optical reference cavity using a spatial-mode readout technique. The experiment utilized a traveling wave cavity with a finesse of approximately 10,000, housed in a thermally controlled vacuum chamber. The tilt locking method in a double pass configuration has promising performance in the 100 µHz-1 Hz band, including surpassing the Gravity Recovery and Climate Experiment (GRACE) Follow-On laser ranging interferometer requirement. Tilt locking offers a number of benefits such as high sensitivity, low cost, and simple implementation and therefore should be considered for future applications requiring high performance laser locking, such as future laser-based satellite geodesy missions and the Laser Interferometer Space Antenna.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.427615 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!