We demonstrate, to the best of our knowledge, the first double-pass pre-chirp managed fiber amplifier. The double-pass fiber amplifier exhibits high gain allowing us to amplify chirped picosecond pulses from 20 mW to 113 W in a rod-type Yb-fiber corresponding to 38 dB gain. We study the dependence of static mode degradation (SMD) on the nonlinear phase shift (NPS) accumulated by the amplified pulse. Our results indicate that a larger nonlinear phase shift results in stronger nonlinear polarization evolution of the fundamental mode and leads to a lower threshold for SMD. After optimization, our pre-chirp managed amplifier seeded by 80 mW pulses delivers 102 W amplified power from the main output. The amplified pulses are compressed to 37 (55) fs with 90 (100) W average power by a grating pair (chirped mirrors). The double-pass configuration significantly simplifies the implementation of pre-chirp managed fiber amplifiers leading to an extremely compact system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.428066DOI Listing

Publication Analysis

Top Keywords

pre-chirp managed
16
double-pass pre-chirp
8
high gain
8
average power
8
managed fiber
8
fiber amplifier
8
nonlinear phase
8
phase shift
8
double-pass
4
managed
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!