A weak force sensor scheme is presented in an optomechanical system, in which the two cavity modes couple to a mechanical mode with linear and quadratic coupling. Due to introducing time-dependent hopping, the linear and quadratic coupling terms coexist under the rotating-wave approximation in the interaction picture. Compared with the quantum non-demolition measurement (ignoring the quadratic optomechanical coupling), the current scheme can decrease the additional noise to a lower level. Our proposal provides a promising platform for improving the detection of a weak force.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.425484 | DOI Listing |
Sci Rep
January 2025
School of Physics and Optoelectronics, Xiangtan University, Xiangtan, 411105, China.
We introduce two strategies to enhance quantum synchronization within a triple-cavity optomechanical system, where each cavity contains an oscillator and is interconnected via optical fibers. Our results demonstrate that applying appropriate periodic modulation to the driving fields or the cavity modes can ensure robust quantum synchronization across both open and closed configurations. This approach offers promising avenues for expanding quantum synchronization capabilities in multi-cavity systems and has significant implications for advancing quantum synchronization generation and application in complex networks.
View Article and Find Full Text PDFLuminescence
December 2024
Department of Chemistry, Faculty of Science, Umm Al-Qura University, Makkah, Saudi Arabia.
This study investigates the optical, mechanical, and antimicrobial properties of polypropylene (PP) fibers enhanced with titanium dioxide (TiO) and zinc oxide (ZnO) nanoparticles. Using a Mach-Zehnder interferometric system, we examined the refractive indices, birefringence, and opto-mechanical behavior of blank PP, PP/TiO, and PP/ZnO nanocomposite fibers under various conditions, including different polarization orientations and during cold drawing processes. The 2D Fourier transform algorithm is employed to analyze interferometric data, enabling precise measurements of refractive index profiles and birefringence.
View Article and Find Full Text PDFScience
December 2024
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Collective phenomena arise from interactions within complex systems, leading to behaviors absent in individual components. Observing quantum collective phenomena with macroscopic mechanical oscillators has been impeded by the stringent requirement that oscillators be identical. We demonstrate the quantum regime for collective motion of = 6 mechanical oscillators, a hexamer, in a superconducting circuit optomechanical platform.
View Article and Find Full Text PDFHardwareX
December 2024
Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.
In the context of experimental optics- and photonics-research, motorized, high-precision rotation stages are an integral part of almost every laboratory setup. Nevertheless, their availability in the laboratory is limited due to the relatively high acquisition costs in the range of several 1000€ and is often supplemented by manual rotation stages. If only a single sample is to be analyzed repeatedly at two different angles or the polarization of a laser source is to be rotated, this approach is understandable.
View Article and Find Full Text PDFNanophotonics
July 2024
University of Southampton, Southampton, UK.
Optically levitated multiple nanoparticles have emerged as a platform for studying complex fundamental physics such as non-equilibrium phenomena, quantum entanglement, and light-matter interaction, which could be applied for sensing weak forces and torques with high sensitivity and accuracy. An optical trapping landscape of increased complexity is needed to engineer the interaction between levitated particles beyond the single harmonic trap. However, existing platforms based on spatial light modulators for studying interactions between levitated particles suffered from low efficiency, instability at focal points, the complexity of optical systems, and the scalability for sensing applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!