Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this article, we propose a simple yet effective approach, called point adversarial self mining (PASM), to improve the recognition accuracy in facial expression recognition (FER). Unlike previous works focusing on designing specific architectures or loss functions to solve this problem, PASM boosts the network capability by simulating human learning processes: providing updated learning materials and guidance from more capable teachers. Specifically, to generate new learning materials, PASM leverages a point adversarial attack method and a trained teacher network to locate the most informative position related to the target task, generating harder learning samples to refine the network. The searched position is highly adaptive since it considers both the statistical information of each sample and the teacher network capability. Other than being provided new learning materials, the student network also receives guidance from the teacher network. After the student network finishes training, the student network changes its role and acts as a teacher, generating new learning materials and providing stronger guidance to train a better student network. The adaptive learning materials generation and teacher/student update can be conducted more than one time, improving the network capability iteratively. Extensive experimental results validate the efficacy of our method over the existing state of the arts for FER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3085744 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!