Objective: Toward the ultimate goal of robust cuff-less blood pressure (BP) tracking with wrist wearables against postural changes, the goal of this work was to investigate posture-dependent variability in pulse transit time (PTT) measured with ballistocardiogram (BCG) and photoplethysmogram (PPG) signal pair at the wrist.

Methods: BCG and PPG signals were acquired from 25 subjects under the combination of 3 body (standing, sitting, and supine) and 3 arm (vertical in head-to-foot direction, placed on the chest, and holding a shoulder) postures. PTT was computed as the time interval between the BCG J wave and the PPG foot, and the impact of the 9 postures on PTT was analyzed by invoking an array of possible physical mechanisms.

Results: Our work suggests that (i) wrist BCG-PPG PTT is consistent under standing and sitting postures with vertically held arms; and (ii) changes in wrist orientation and height as well as restrictions in body and arm movement may alter wrist BCG-PPG PTT via distortions in the wrist BCG and PPG waveforms. The results indicate that wrist BCG-PPG PTT varies with respect to postures even when BP remains constant.

Conclusion: The potential of cuff-less BP tracking via wrist BCG-PPG PTT demonstrated under standing posture with arms vertically down in the head-to-foot direction may not generalize to other body and arm postures.

Significance: Understanding the physical mechanisms responsible for posture-induced BCG-PPG PTT variability may increase the versatility of the wrist BCG for cuff-less BP tracking.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBME.2021.3094200DOI Listing

Publication Analysis

Top Keywords

bcg-ppg ptt
20
wrist bcg-ppg
16
wrist
9
posture-dependent variability
8
pulse transit
8
transit time
8
cuff-less blood
8
blood pressure
8
pressure tracking
8
tracking wrist
8

Similar Publications

Objective: Toward the ultimate goal of robust cuff-less blood pressure (BP) tracking with wrist wearables against postural changes, the goal of this work was to investigate posture-dependent variability in pulse transit time (PTT) measured with ballistocardiogram (BCG) and photoplethysmogram (PPG) signal pair at the wrist.

Methods: BCG and PPG signals were acquired from 25 subjects under the combination of 3 body (standing, sitting, and supine) and 3 arm (vertical in head-to-foot direction, placed on the chest, and holding a shoulder) postures. PTT was computed as the time interval between the BCG J wave and the PPG foot, and the impact of the 9 postures on PTT was analyzed by invoking an array of possible physical mechanisms.

View Article and Find Full Text PDF

Objective: Toward the ultimate goal of cuff-less blood pressure (BP) trend tracking via pulse transit time (PTT) using wearable ballistocardiogram (BCG) signals, we present a unified approach to the gating of wearable BCG and the localization of wearable BCG waves.

Methods: We present a unified approach to localize wearable BCG waves suited to various gating and localization reference signals. Our approach gates individual wearable BCG beats and identifies candidate waves in each wearable BCG beat using a fiducial point in a reference signal, and exploits a pre-specified probability distribution of the time interval between the BCG wave and the fiducial point in the reference signal to accurately localize the wave in each wearable BCG beat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!