A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Heywood you go away! Examining causes, effects, and treatments for Heywood cases in exploratory factor analysis. | LitMetric

Exploratory factor analysis (EFA) is a popular method for elucidating the latent structure of data. Unfortunately, EFA models can sometimes produce improper solutions with nonsensical results. For example, improper EFA solutions can include one or more Heywood cases, where common factors account for 100% or more of an observed variable's variance. To better understand these senseless estimates, we conducted four Monte Carlo studies that illuminate the (a) causes, (b) consequences, and (c) effective treatments for Heywood cases in EFA models. Studies 1 and 2 showed that numerous model and data characteristics are associated with Heywood cases, such as small sample sizes, poorly defined factors with low factor score determinacy values, and factor overextraction. In Study 3, we examined the consequences of Heywood cases for EFA model interpretation and found that Heywood cases increase factor loading variances and upwardly bias factor score determinacy values. Study 4 compared the model recovery of several EFA algorithms that were designed to avoid Heywood cases. Our results indicated that, among the algorithms compared, regularized common factor analysis (Jung & Takane, 2008) was the most reliable method for avoiding Heywood cases and producing EFA parameter estimates with small mean squared errors. We discuss best practices for conducting EFA with data sets that might yield Heywood cases. (PsycInfo Database Record (c) 2022 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000384DOI Listing

Publication Analysis

Top Keywords

heywood cases
36
factor analysis
12
heywood
10
cases
9
treatments heywood
8
exploratory factor
8
efa
8
efa models
8
cases efa
8
factor score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!