Single-walled carbon nanotubes (SWCNTs) have been used in a variety of sensing and imaging applications over the past few years due to their unique optical properties. In the solution phase, SWCNTs are employed as near-infrared (NIR) fluorescence-based sensors of target analytes via modulations in emission intensity and/or wavelength. In an effort to lower the limit of detection, research has been conducted into isolating SWCNTs adhered to surfaces for potential single molecule analyte detection. However, it is known that SWCNT fluorescence is adversely affected by the inherently rough surfaces that are conventionally used for their observation (e.g., glass coverslip), potentially interfering with fluorescence-based analyte detection. Here, using a spin-coating method with thin films of alginate and SWCNTs, we demonstrate that a novel hydrogel platform can be created to investigate immobilized individual SWCNTs without significantly perturbing their optical properties as compared to solution-phase values. In contrast to the glass coverslip, which red-shifted DNA-functionalized (6,5)-SWCNTs by an average of 3.4 nm, the hydrogel platform reported emission wavelengths that statistically matched the solution-phase values. Additionally, the heterogeneity in the wavelength measurements, as determined from the width of created histograms, was reduced nearly by a factor of 3 for the SWCNTs in the hydrogel platform when compared to glass coverslips. Using long SWCNTs, i.e., those with an average length above the diffraction limit of our microscope, we show that a glass coverslip can induce optical heterogeneity along the length of a single SWCNT regardless of its surface functionalization. This is again significantly mitigated when examining the long SWCNTs in the hydrogel platform. Finally, we show that upon the addition of a model analyte (calcium chloride), the optical response can be spatially resolved along the length of a single SWCNT, enabling localized analyte detection on the surface of a single nanoscale sensor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c06562 | DOI Listing |
Pharmaceutics
January 2025
Department of Biomedical Engineering, University of Minnesota, 7-105 Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, USA.
Focused ultrasound has advantages as an external stimulus for drug delivery as it is non-invasive, has high precision and can penetrate deep into tissues. Here, we report a gold-plated alginate (ALG) hydrogel system that retains highly water-soluble small-molecule fluorescein for sharp off/on release after ultrasound exposure. The ALG is crosslinked into beads with calcium chloride and layered with a polycation to adjust the surface charge for the adsorption of catalytic platinum nanoparticles (Pt NPs).
View Article and Find Full Text PDFPharmaceutics
January 2025
CDL Research, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
Background/objectives: Glioblastoma is the most common and lethal primary brain tumor. Patients often suffer from tumor- and treatment induced vasogenic edema, with devastating neurological consequences. Intracranial edema is effectively treated with dexamethasone.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.
: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.
View Article and Find Full Text PDFPharmaceutics
December 2024
School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand.
Skin ageing, driven predominantly by oxidative stress from reactive oxygen species (ROS) induced by environmental factors like ultraviolet A (UVA) radiation, accounts for approximately 80% of extrinsic skin damage. L-glutathione (GSH), a potent antioxidant, holds promise in combating UVA-induced oxidative stress. However, its instability and limited penetration through the stratum corneum hinder its topical application.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Research Institute on Terrestrial Ecosystems (IRET), CNR, Via Pietro Castellino 111, 80131 Naples, Italy.
Marine polysaccharide hydrogels have emerged as an innovative platform for regulating the in vivo release of natural bioactive compounds for medical purposes. These hydrogels, which have exceptional biocompatibility, biodegradability, and high water absorption capacity, create effective matrices for encapsulating different bioactive molecules. In addition, by modifying the physical and chemical properties of marine hydrogels, including cross-linking density, swelling behavior, and response to external stimuli like pH, temperature, or ionic strength, the release profile of encapsulated bioactive compounds is strictly regulated, thus maximizing therapeutic efficacy and minimizing side effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!