Larval Diaphania indica (Saunders) (Lepidoptera: Crambidae) cause complete defoliation of Trichosanthes anguina L. and reduce crop yield in India. Females lay eggs on the leaf surface, and therefore leaf surface waxes are potentially involved in host selection. Alkanes and free fatty acids are the major constituents of leaf surface waxes, so a study was conducted to determine whether these wax constituents from three T. anguina cultivars (MNSR-1, Baruipur Long, and Polo No.1) could act as short-range attractants and oviposition stimulants in D. indica females. Twenty n-alkanes from n-C to n-C and 13 free fatty acids from C12:0 to C21:0 were detected in the leaf surface waxes of these cultivars. Heptadecane and stearic acid were predominant among n-alkanes and free fatty acids, respectively, in these cultivars. Females showed attraction towards one leaf equivalent surface wax of each of these cultivars against solvent controls (petroleum ether) in Y-tube olfactometer bioassays. A synthetic blend of heptadecane, eicosane, hexacosane, and stearic acid, a synthetic blend of hexacosane and stearic acid, and a synthetic blend of pentadecane and stearic acid comparable to amounts present in one leaf equivalent surface wax of MNSR-1, Baruipur Long, and Polo No.1, respectively, were short-range attractants and oviposition stimulants in D. indica. Female egg laying responses were similar to each of these blends, providing information that could be used to developing baited traps in integrated pest management (IPM) programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10886-021-01291-w | DOI Listing |
RSC Adv
January 2025
Chemistry Department, Faculty of Science, Mansoura University Mansoura 35516 Egypt +201000166374.
In this study, stems and leaves of the papaya plant were employed to prepare a high-quality porous adsorbent carbonization and chemical activation using phosphoric acid. This adsorbent demonstrates superior adsorption capabilities for the efficient removal of hazardous alizarin red s (ARS) and methylene blue (MB) dyes. Thus, it contributes to waste reduction and promotes sustainable practices in environmental remediation, aligning with global efforts to develop sustainable materials that address water pollution while supporting circular economy principles.
View Article and Find Full Text PDFJ Appl Microbiol
January 2025
Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, 550025 Guiyang, China.
Aims: To determine the optimum conditions for extracting Eucommia ulmoides gum (EUG) from Eucommia ulmoides leaves during fermentation by Coprinellus disseminatus. At the same time, the EUG characteristics were characterized.
Methods And Results: The ability of C.
PhytoKeys
December 2024
Southern Institute of Ecology, Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam Institute of Applied Materials Science, Vietnam Academy of Science and Technology Ho Chi Minh Vietnam.
is described as a new species endemic to Central Vietnam. It is morphologically closest to in having setose hairs on the abaxial leaf surface and a pedunculate head-like inflorescence but differs from the latter by a number of characteristics: shorter stem, 3-lobed stipules, narrowly lanceolate leaf blades with a cuneate-oblique base and 20-22 pairs of secondary veins, 3.5-4.
View Article and Find Full Text PDFTheor Appl Genet
January 2025
State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
Cu-based catalysts for the electrochemical reduction of CO and CO exhibit a perplexingly unique reactivity toward multicarbon based products compared to other studied electrocatalysts. Here we use insights gained from a recent phenomenological 3-site microkinetic model and grand-canonical density functional theory calculations to clarify the importance of an underemphasized aspect critical to Cu's unique reactivity: a population of so-called "reservoir" sites. Using model Cu surface motifs, we discuss how these types can be represented by undercoordinated structural defects like step edges and grain boundaries which form a network of highly anisotropic migration channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!