LRRK2 recruitment, activity, and function in organelles.

FEBS J

Cell Biology and Gene Expression Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.

Published: November 2022

Protein coding mutations in leucine-rich repeat kinase 2 (LRRK2) cause familial Parkinson's disease (PD), and noncoding variations around the gene increase the risk of developing sporadic PD. It is generally accepted that pathogenic LRRK2 mutations increase LRRK2 kinase activity, resulting in a toxic hyperactive protein that is inferred to lead to the PD phenotype. LRRK2 has long been linked to different membrane trafficking events, but the specific role of LRRK2 in these events has been difficult to resolve. Recently, several papers have reported the activation and translocation of LRRK2 to cellular organelles under specific conditions, which suggests that LRRK2 may influence intracellular membrane trafficking. Here, we review what is known about the role of LRRK2 at various organelle compartments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8744135PMC
http://dx.doi.org/10.1111/febs.16099DOI Listing

Publication Analysis

Top Keywords

lrrk2
9
membrane trafficking
8
role lrrk2
8
lrrk2 recruitment
4
recruitment activity
4
activity function
4
function organelles
4
organelles protein
4
protein coding
4
coding mutations
4

Similar Publications

Critical Assessment of Computational Hit-Finding Experiments (CACHE) Challenges emerged as real-life stress tests for computational hit-finding strategies. In CACHE Challenge #1, 23 participants contributed their original workflows to identify small-molecule ligands for the WD40 repeat (WDR) of LRRK2, a promising Parkinson's target. We applied the FRASE-based hit-finding robot (FRASE-bot), a platform for interaction-based screening allowing a drastic reduction of the explorable chemical space and a concurrent detection of putative ligand-binding sites.

View Article and Find Full Text PDF

Endogenous LRRK2 and PINK1 function in a convergent neuroprotective ciliogenesis pathway in the brain.

Proc Natl Acad Sci U S A

February 2025

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.

Mutations in Leucine-rich repeat kinase 2 (LRRK2) and PTEN-induced kinase 1 (PINK1) are associated with familial Parkinson's disease (PD). LRRK2 phosphorylates Rab guanosine triphosphatase (GTPases) within the Switch II domain while PINK1 directly phosphorylates Parkin and ubiquitin (Ub) and indirectly induces phosphorylation of a subset of Rab GTPases. Herein we have crossed LRRK2 [R1441C] mutant knock-in mice with PINK1 knock-out (KO) mice and report that loss of PINK1 does not impact endogenous LRRK2-mediated Rab phosphorylation nor do we see significant effect of mutant LRRK2 on PINK1-mediated Rab and Ub phosphorylation.

View Article and Find Full Text PDF

Elucidating the genetic contributions to Parkinson's disease (PD) etiology across diverse ancestries is a critical priority for the development of targeted therapies in a global context. We conducted the largest sequencing characterization of potentially disease-causing, protein-altering and splicing mutations in 710 cases and 11,827 controls from genetically predicted African or African admixed ancestries. We explored copy number variants (CNVs) and runs of homozygosity (ROHs) in prioritized early onset and familial cases.

View Article and Find Full Text PDF

A network-based systems genetics framework identifies pathobiology and drug repurposing in Parkinson's disease.

NPJ Parkinsons Dis

January 2025

Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. However, current treatments only manage symptoms and lack the ability to slow or prevent disease progression. We utilized a systems genetics approach to identify potential risk genes and repurposable drugs for PD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!