Formation Process of Silicate-Iron Oxyhydroxide Complex and Its Influence on the Distribution of Heavy Metals in Mining Area.

Bull Environ Contam Toxicol

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 South Jingming Road, Chenggong District, Kunming, 650500, People's Republic of China.

Published: December 2021

Silicate-iron oxyhydroxide complex formed by mineral weathering has an important influence on the geochemical reactions of heavy metals in mining areas. In this work, tailings were collected from an abandoned iron tailings pond, and the physicochemical properties and distribution of heavy metals were studied under natural weathering and hydraulic processes. The results showed that Fe in the iron tailings were transported to the surface during the weathering process, and then the iron oxyhydroxide formed by mineralization adsorbed Cu and Zn. Silicic acid and exchangeable acid were released during the formation of binary agglomerates between hydroxy iron oxide and kaolin, then they migrated to the lower area of a tailing pond via surface runoff. Finally, silicate-iron oxyhydroxide complex were formed. The heavy metals were replaced by H and penetrated to the bottom layer with water. This research provides an important scientific basis for the prevention and control of heavy metal pollution in mining areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00128-021-03300-wDOI Listing

Publication Analysis

Top Keywords

heavy metals
16
silicate-iron oxyhydroxide
12
oxyhydroxide complex
12
distribution heavy
8
metals mining
8
complex formed
8
mining areas
8
iron tailings
8
heavy
5
formation process
4

Similar Publications

Several recent investigations into montane regions have reported on excess mercury accumulation in high-altitude forest ecosystems. This study explored the Singalila National Park, located on the Singalila ridge of the Eastern Himalayas, revealing substantial mercury contamination. Particular focus was on Sandakphu (3636 m), the highest peak in West Bengal, India.

View Article and Find Full Text PDF

Carcinoembryonic antigen (CEA) and C-reactive protein (CRP) are biomacromolecules known as cancer and inflammatory markers. Thus, they play a crucial role in early cancer diagnosis, post-treatment recurrence detection, and tumor risk assessment. This paper describes the development of an ultrasensitive and selective imprinted paper-based analytical device (PAD) as impedance sensor for determination of CEA and CRP in serum samples for point-of-care testing (POCT).

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

Wheat (Triticum aestivum L.) productivity and quality can be threatened by soil cadmium (Cd) contamination, posing a concern to food security. Salicylic acid (SA) is an endogenously produced signaling molecule that activates the defense system imparting abiotic stress tolerance in plants.

View Article and Find Full Text PDF

The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!