Cyclometalated Ir(III) complexes as potential electron acceptors for organic solar cells.

Dalton Trans

Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

Published: July 2021

Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands. The two Ir complexes exhibit suitable HOMO/LUMO energy levels of -5.55/-3.47 eV and -5.44/-3.48 eV, which are ∼0.1 eV higher in the HOMO and ∼0.15 eV deeper in the LUMO than the TR and 2TR ligands, respectively. 2TRIr with extended ligand π-conjugation displays a poor triplet feature, while TRIr demonstrates obvious metal-to-ligand charge transfer (MLCT) transition absorption, with a triplet component photoluminescence (PL) lifetime of 85 ns in neat films. When blended with PBDB-T in bulk heterojunction (BHJ) OSCs, the power conversion efficiencies (PCEs) are 2-3 times higher than their relevant ligands, with values of 1.20% and 1.62% for TRIr and 2TRIr, and 0.58% and 0.47% for the TR and 2TR ligand-based devices, respectively. TRIr and 2TRIr based active layer blends exhibit poorer hole and electron mobilities, whereas compared with their relatively linear planar ligands, both of the two octahedral Ir complexes exhibit an optimized surface morphology for less bimolecular recombination and more efficient exciton dissociation, thus contributing to improved photovoltaic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1dt01136gDOI Listing

Publication Analysis

Top Keywords

trir 2trir
12
organic solar
8
solar cells
8
exciton dissociation
8
electron acceptor
8
acceptor materials
8
2trir based
8
organic ligands
8
complexes exhibit
8
electron
6

Similar Publications

Cyclometalated Ir(III) complexes as potential electron acceptors for organic solar cells.

Dalton Trans

July 2021

Key Lab for Flexible Electronics and Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.

Cyclometalated iridium(iii) complexes have been investigated as promising electron donor (D) materials in organic solar cells (OSCs) due to their unique octahedral configuration for optimized morphology and their significantly long lifetimes potentially for enhanced exciton dissociation. However, the application as electron acceptor (A) materials has never been reported. In order to fill this blank, herein, two cyclometalated heteroleptic Ir complexes, TRIr and 2TRIr, based on electron donating-accepting type organic ligands with different π-conjugation lengths are reported as electron acceptor materials in comparison with their corresponding main organic ligands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!