AI Article Synopsis

  • The study revisits the photo-isomerisation mechanism of azobenzene using advanced quantum-classical dynamics and multi-reference electronic structure methods, focusing on the differences in quantum yield between excitation to nπ* and ππ* states.
  • Results show a 0.10 reduction in quantum yield when excited to the higher energy ππ* state compared to the lower energy nπ* state, aligning closely with recent experimental findings that challenge previous literature on the subject.
  • The decrease in quantum yield is attributed to the differences in how the central bond angles allow for rotation after excitation, with ππ* excitation leading to more isomers being trapped in a potential well that limits their formation efficiency.

Article Abstract

The → photo-isomerisation mechanism of azobenzene, after excitation to the nπ* and ππ* states, is revisited using high-level surface hopping mixed quantum-classical dynamics in combination with multi-reference CASSCF electronic structure calculations. A reduction of photoisomerisation quantum yield of 0.10 on exciting to the higher energy ππ* state compared to the lower energy nπ* state is obtained, in close agreement with the most recent experimental values [Ladányi , , 2017, , 1757-1761] which re-examined previous literature values which showed larger changes in quantum yield. By direct comparison of both excitations, we have found that the explanation for the decrease in quantum yield is not the same as for the reduction observed in the → photoisomerisation. In contrast to the → scenario, S → S decay does not occur at 'earlier' C-NN-C angles along the central torsional coordinate after ππ* excitation, as in the → case the rotation about this coordinate occurs too rapidly. The wavelength dependency of the quantum yield is instead found to be due to a potential well on the S surface, from which either or -azobenzene can be formed. While this well is accessible after both excitations, it is more easily accessed after ππ* excitation - an additional 15-17% of photochromes, which under nπ* excitation would have exclusively formed the isomer, are trapped in this well after ππ* excitation. The probability of forming the isomer when leaving this well is also higher after ππ* excitation, increasing from 9% to 35%. The combination of these two factors results in the reduction of 0.10 of the quantum yield of photoisomerisation on ππ* excitation of -azobenzene, compared to nπ* excitation.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01873fDOI Listing

Publication Analysis

Top Keywords

quantum yield
20
ππ* excitation
20
→ photoisomerisation
8
excitation
8
nπ* excitation
8
ππ*
7
6
quantum
5
yield
5
photoisomerisation azobenzene
4

Similar Publications

Automated and Efficient Sampling of Chemical Reaction Space.

Adv Sci (Weinh)

January 2025

Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.

View Article and Find Full Text PDF

One-Pot Transition-Metal-Free Synthesis of π-Extended Bipolar Polyaromatic Hydrocarbons.

Angew Chem Int Ed Engl

January 2025

Instytut Chemii Organicznej PAN: Instytut Chemii Organicznej Polskiej Akademii Nauk, Institute of Organic Chemistry, Kasprzaka 44/52, 01-224, Warsaw, POLAND.

The development of straightforward synthetic methods for photoactive polycyclic aromatic hydrocarbons (PAHs) that avoid Pd-catalyzed or radical-based processes remains a challenge. Such methods are essential to reducing the cost and environmental impact of organic photodevices. In this work, we present a one-pot synthetic approach for creating novel bipolar PAHs with extended π-conjugation, which are not accessible via conventional Pd-catalyzed routes.

View Article and Find Full Text PDF

Elucidating the mechanism behind the significant changes in photoluminescence behavior after powder compression into a tablet.

Phys Chem Chem Phys

January 2025

Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.

Nonconventional luminogens have great potential for applications in fields like anti-counterfeiting encryption. But so far, the photoluminescence quantum yield (PLQY) of most of these powders is still relatively low and the persistent room temperature phosphorescence (p-RTP) emission is relatively weak. To improve their PLQY and p-RTP, pressing the powder into tablets has been preliminarily proven to be an effective method, but the specific mechanism has not been fully elucidated yet.

View Article and Find Full Text PDF

Lanthanide (Ln) tetrakis complexes, C[Ln(L)], are important for applications due to their high quantum yields, solubility, and stability. Their luminescent properties depend on the structure, particularly the coordination polyhedron, the assessment of computational methods for calculating their structures is paramount. Usually, this assessment uses the RMSD of distances in the [Ln(L)] complex or {LnO} polyhedron between crystallographic and calculated structures.

View Article and Find Full Text PDF

Enhancement of photoinduced reactive oxygen species generation in open-cage fullerenes.

Chem Sci

December 2024

Institut de Quimica Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona M. Aurèlia Capmany, 69 17003 Girona Catalonia Spain

Photodynamic therapy is an important tool in modern medicine due to its effectiveness, safety, and the ability to provide targeted treatment for a range of diseases. Photodynamic therapy utilizes photosensitizers to generate reactive oxygen species (ROS). Fullerenes can be used as photosensitizers to produce ROS in high quantum yields.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!