Stimulator of interferon genes (STING) functions in the cytosolic DNA-sensing pathway of innate immunity in mammals. It is activated upon binding the cyclic dinucleotide 2'3'-cGAMP, a second messenger produced by the enzyme cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS), which acts as the receptor for DNA in this pathway, and triggers the expression of interferons and other viral stress-induced genes. The ancient origin of STING in the evolution of animals had been noted, but its primitive function was speculative. We review here recent advances in the remarkable history of cGAS-STING signaling, which establish that cGAS is a member of the family of cGAS/DncV-like nucleotidyltransferases (CD-NTases). In bacteria, CD-NTases synthesize a wide range of cyclic oligonucleotide second messengers in response to bacteriophage infections, which in turn activate a variety of effector proteins to abort phage infection. Among these effectors, some are related to STING, revealing an ancestral function for the cGAS-STING cassette in antiviral host defense. Study of STING signaling in invertebrate animals is consistent with an early acquisition in the history of metazoans of CD-NTase- and STING-encoding genes to counter the universal threat of viruses. In particular, STING-dependent immunity appears to play a previously unsuspected important role in some insects. These discoveries open up interesting perspectives for the use of model organisms to decipher emerging aspects of cGAS-STING biology in mammals, such as the activation of interferon-independent responses or the function and regulation of cGAS in the nucleus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8204762 | PMC |
http://dx.doi.org/10.12703/r/10-54 | DOI Listing |
J Immunother Cancer
January 2025
Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China
Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.
View Article and Find Full Text PDFClin Transl Med
January 2025
Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.
Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.
Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.
Nano Lett
January 2025
School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
cGAS-STING pathway activation has attracted considerable attention in antitumor immunotherapy, but clinical outcomes lag behind expectations due to overlooked negative feedback mechanisms. Here, we determine that STING activation promotes tumor stemness, which weakens the efficacy of STING-based therapies, presenting a double-edged sword. To address this therapeutic paradox, a simple metal-phenolic polymeric micelle (HMQ) was developed, in which Mn (a STING agonist) is coordinated with quercetin (a stemness inhibitor) and hyaluronic acid (HA), to unlock the full therapeutic potential of the cGAS-STING pathway.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Anesthesiology and Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China. Electronic address:
Intestinal perforations lead to a high risk of sepsis-associated morbidity and multi-organ dysfunctions. A perforation allows intestinal contents (IC) to enter the peritoneal cavity, causing abdominal infections. Right- and left-sided perforations have different prognoses in humans, but the mechanisms associated with different cecum and colon perforations remain unclear.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Life Science and Technology, China Pharmaceutical University, Nanjing, China; Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong, China. Electronic address:
Cyclic GMP-AMP synthase (cGAS)-Stimulator of interferon genes (STING) signaling pathway, an essential element in the innate antiviral immune responses, has emerged as a key component of innate immune system to modulate type I IFNs production and response by recognizing both exogenous and endogenous DNA. Although some cGAS-STING signaling small molecule agonists have been developed, there are few natural polysaccharides reported to activate cGAS-STING signaling for the treatment of infectious diseases. Here, we reported that Laminaran, a low molecular weight β-glucan storage polysaccharide present in brown algae, potentiates cGAS-STING signaling to promote type I IFNs production and antiviral response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!