A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mito-Tempo suppresses autophagic flux via the PI3K/Akt/mTOR signaling pathway in neuroblastoma SH-SY5Y cells. | LitMetric

Mito-Tempo suppresses autophagic flux via the PI3K/Akt/mTOR signaling pathway in neuroblastoma SH-SY5Y cells.

Heliyon

Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathumthani, 12120, Thailand.

Published: June 2021

The generation of excessive mitochondrial reactive oxygen species (mtROS) is associated with glutamate-stimulated neurotoxicity and pathogenesis of Alzheimer's disease (AD). Impaired mitochondrial function is accompanied with oxidative stress that is a significant contributor to initiate autophagy, but the underlying mechanisms are not fully understood. The present study aimed to investigate the neuroprotective effects of Mito-Tempo on glutamate-induced neuroblastoma SH-SY5Y cell toxicity. SH-SY5Y cells were treated with 100 μM glutamate in the presence or absence of 50 and 100 μM Mito-Tempo for 24 h. Changes in cell viability were measured by MTT assay. Cytotoxicity and intracellular ROS accumulation were also evaluated using lactate dehydrogenase (LDH) activity assay and 2,7-dichlorofluorescein diacetate (DCFDA) Reactive Oxygen Species Assay kit, respectively. Mitochondrial membrane potential was analyzed by tetraethylbenzimidazoly-lcarbocyanine iodide (JC-1) staining. Expression of PI3K/AKT/mTOR pathway and autophagy markers, including LC3 (LC3-I/-II) and p62 (SQSTM1) were performed using Western blot analysis. Our results demonstrated that glutamate-exposed cells significantly increased cellular oxidative stress by enhancing ROS production. Glutamate treatment also increased LDH release follows the loss of mitochondrial membrane potential, caused cell viability loss. Treatment with Mito-Tempo not only attenuated the generation of ROS and improved mitochondrial membrane potential but also reduced the neurotoxicity of glutamate in a concentration-dependent manner, which leads to increased cell viability and decreased LDH release. Mito-Tempo has a greater protective effect by enhancing superoxide dismutase (SOD) activity and PI3K/AKT/mTOR phosphorylation. Moreover, Mito-Tempo treatment altered the autophagy process resulting in the decline in the ratio of the autophagy markers LC3-I/-II and p62 (SQSTM1). We propose that Mito-Tempo can improve neuronal properties against glutamate cytotoxicity through its direct free radical scavenging activity and inhibit excessive autophagy signaling pathway, therefore, allow for further studies to investigate the therapeutic potentials of Mito-Tempo in animal disease models and human.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8239474PMC
http://dx.doi.org/10.1016/j.heliyon.2021.e07310DOI Listing

Publication Analysis

Top Keywords

cell viability
12
mitochondrial membrane
12
membrane potential
12
mito-tempo
8
signaling pathway
8
neuroblastoma sh-sy5y
8
sh-sy5y cells
8
reactive oxygen
8
oxygen species
8
oxidative stress
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!