Introduction: is the most noxious species among other species that cause malaria. Attention is required to understand more about the pathophysiology and parasite biology to obscure this disease. The fact is, very little is known about the nutritional requirement in sense of carbohydrate, lipid, nucleic acid, and amino acid metabolism that regulate the growth of parasite and out of this, studies related to the metabolism of amino acid are exceptionally limited. Out of several amino acids, L-cysteine is essential for the continuous erythrocytic growth of . However, the exact role of L-cysteine in regulating the growth of is unknown. Here, we tried to investigate how does L-cysteine affects the growth of in culture, and also the study was aimed to find whether there is a synergism with chloroquine on the growth .

Materials And Methods: Parasite inhibition assay based on schizont maturation inhibition following WHO protocol on chloroquine-sensitive strain (MRC-2) was employed to determine IC value and drug interaction pattern was shown through fractional inhibitory concentration index.

Results: Inhibitory effect of L-cysteine hydrochloride on growth was depicted with IC 1.152 ± 0.287 μg/mL and the most synergistic pattern of interaction was shown with chloroquine.

Conclusions: The present study anticipates two important findings, firstly inconsistent results from previous findings and secondly, synergistic effect with chloroquine suggests its potency that may be used as an add-on therapy along with chloroquine. However, further study is needed to validate the above findings models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8213117PMC
http://dx.doi.org/10.4103/tp.TP_20_18DOI Listing

Publication Analysis

Top Keywords

amino acid
8
growth
6
l-cysteine
5
l-cysteine nutritional
4
nutritional booster
4
booster radical
4
radical scavenger
4
scavenger introduction
4
introduction noxious
4
noxious species
4

Similar Publications

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.

View Article and Find Full Text PDF

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

This study investigated a library of known and novel glycyrrhizic acid (GL) conjugates with amino acids and dipeptide esters, as inhibitors of the DENV NS2B-NS3 protease. We utilized docking algorithms to evaluate the interactions of these GL derivatives with key residues (His51, Asp75, Ser135, and Gly153) within 10 Å of the DENV-2 NS2B-NS3 protease binding pocket (PDB ID: 2FOM). It was found that compounds and exhibited unique binding patterns, forming hydrogen bonds with Asp75, Tyr150, and Gly153.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!