The potential of nanomaterials associated with plant growth-promoting bacteria in agriculture.

3 Biotech

Laboratory of Microbiology and Biomolecules, Department of Morphology and Pathology, Federal University of São Carlos (UFSCar), Rod. Washington Luiz, s/n, São Carlos, 13565-905 Brazil.

Published: July 2021

The impacts of chemical fertilizers and pesticides have raised public concerns regarding the sustainability and security of food supplies, prompting the investigation of alternative methods that have combinations of both agricultural and environmental benefits, such as the use of biofertilizers involving microbes. These types of microbial inoculants are living microorganisms that colonize the soil or plant tissues when applied to the soil, seeds, or plant surfaces, facilitating plant nutrient acquisition. They can enhance plant growth by transforming nutrients into a form assimilable by plants and by acting as biological control agents, known as plant growth-promoting bacteria. The potential use of bacteria as biofertilizers in agriculture constitutes an economical and eco-friendly way to reduce the use of chemical fertilizers and pesticides. In this context, nanotechnology has emerged as a new source of quality enrichment for the agricultural sector. The use of nanoparticles can be an effective method to meet the challenges regarding the effectiveness of biofertilizers in natural environments. Given the novel sustainable strategies applied in agricultural systems, this review addresses the effects of nanoparticles on beneficial plant bacteria for promoting plant growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8190246PMC
http://dx.doi.org/10.1007/s13205-021-02870-0DOI Listing

Publication Analysis

Top Keywords

plant
8
plant growth-promoting
8
growth-promoting bacteria
8
chemical fertilizers
8
fertilizers pesticides
8
plant growth
8
potential nanomaterials
4
nanomaterials associated
4
associated plant
4
bacteria
4

Similar Publications

Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.

View Article and Find Full Text PDF

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Natural honey is enriched with essential and beneficial nutrients. This study aimed to investigate the melliferous flora microscopic techniques and assess the biochemical properties of honey. Flavonoid and phenolic contents in honey samples were analyzed via colorimetric and Folin-Ciocalteu methods and the alpha-amylase, reducing power, and minerals using Pull's and spectroscopy methods.

View Article and Find Full Text PDF

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

Screening and identification of evaluation indicators of low phosphorus tolerant germplasm in Gleditsia sinensis Lam.

Sci Rep

December 2024

Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.

This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!