Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer is one of the most common type of tumor and the leading cause of death in the world's female population. Various therapeutic approaches have been used to treat tumors but have not led to complete recovery and have even damaged normal cells in the body. Moreover, metastatic tumors such as breast cancer are much more resistant to treatment, and current treatments have not been very successful in treating them and remain a challenge. Therefore, new approaches should be applied to overcome this problem. Given the importance of hypoxia in tumor survival, we aimed to test the antitumor effects of oxygenated water to decrease hypoxia along with tumor-derived exosomes to target tumor. The purpose of administering oxygenated water and tumor exosomes was to reduce hypoxia and establish an effective immune response against tumor antigens, respectively. For this purpose, the breast cancer mice model was induced using the 4T1 cell line in Balb/c mice and treated with oxygenated water via an intratumoral (IT) and/or intraperitoneal (IP) route and/or exosome (TEX). Oxygenation via the IT+IP route was more efficient than oxygenation via the IT or IP route. The efficiency of oxygenation via the two routes along with TEX led to the best therapeutic outcome. Antitumor immune responses directed by TEX became optimized when systemic (IP) and local (IT) oxygenation was applied compared to administration of TEX alone. Results demonstrated a significant reduction in tumor size and the highest levels of IFN- and IL-17 and the lowest levels of IL-4 FoxP3, HIF-1, VEGF, MMP-2, and MMP-9 in the IT+IP+TEX-treated group. Oxygenated water on the one hand could reduce tumor size, hypoxia, angiogenesis, and metastasis in the tumor microenvironment and on the other hand increases the effective immune response against the tumor systemically. This therapeutic approach is proposed as a new strategy for devising vaccines in a personalized approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8181112 | PMC |
http://dx.doi.org/10.1155/2021/5529484 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!